PDBsum entry 1qk1

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase (creatine kinase) PDB id
Protein chains
(+ 2 more) 379 a.a. *
PO4 ×8
Waters ×293
* Residue conservation analysis
PDB id:
Name: Transferase (creatine kinase)
Title: Crystal structure of human ubiquitous mitochondrial creatine kinase
Structure: Creatine kinase, ubiquitous mitochondrial. Chain: a, b, c, d, e, f, g, h. Synonym: umtck, mia-ck. Engineered: yes. Other_details: recombinant human umtck has an additional ala at the n-terminus
Source: Homo sapiens. Human. Organism_taxid: 9606. Strain: bl21(de3)plyss. Tissue: placenta. Cellular_location: mitochondrial inner membrane. Plasmid: pus04. Gene: genbank accession j04469 gene: genbank accession j04469.
Biol. unit: Octamer (from PQS)
2.7Å     R-factor:   0.195     R-free:   0.219
Authors: M.Eder,U.Schlattner,K.Fritz-Wolf,T.Wallimann,W.Kabsch
Key ref: M.Eder et al. (2000). Crystal structure of human ubiquitous mitochondrial creatine kinase. Proteins, 39, 216-225. PubMed id: 10737943
08-Jul-99     Release date:   11-Apr-00    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P12532  (KCRU_HUMAN) -  Creatine kinase U-type, mitochondrial
417 a.a.
379 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Creatine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

Creatine Biosynthesis
      Reaction: ATP + creatine = ADP + phosphocreatine
+ creatine
+ phosphocreatine
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     membrane   4 terms 
  Biological process     small molecule metabolic process   4 terms 
  Biochemical function     catalytic activity     7 terms  


Proteins 39:216-225 (2000)
PubMed id: 10737943  
Crystal structure of human ubiquitous mitochondrial creatine kinase.
M.Eder, K.Fritz-Wolf, W.Kabsch, T.Wallimann, U.Schlattner.
Creatine kinase (CK), catalyzing the reversible trans-phosphorylation between ATP and creatine, plays a key role in the energy metabolism of cells with high and fluctuating energy requirements. We have solved the X-ray structure of octameric human ubiquitous mitochondrial CK (uMtCK) at 2.7 A resolution, representing the first human CK structure. The structure is very similar to the previously determined structure of sarcomeric mitochondrial CK (sMtCK). The cuboidal octamer has 422 point group symmetry with four dimers arranged along the fourfold axis and a central channel of approximately 20 A diameter, which extends through the whole octamer. Structural differences with respect to sMtCK are found in isoform-specific regions important for octamer formation and membrane binding. Octameric uMtCK is stabilized by numerous additional polar interactions between the N-termini of neighboring dimers, which extend into the central channel and form clamp-like structures, and by a pair of salt bridges in the hydrophobic interaction patch. The five C-terminal residues of uMtCK, carrying positive charges likely to be involved in phospholipid-binding, are poorly defined by electron density, indicating a more flexible region than the corresponding one in sMtCK. The structural differences between uMtCK and sMtCK are consistent with biochemical studies on octamer stability and membrane binding of the two isoforms.

Literature references that cite this PDB file's key reference

  PubMed id Reference
21448658 T.Wallimann, M.Tokarska-Schlattner, and U.Schlattner (2011).
The creatine kinase system and pleiotropic effects of creatine.
  Amino Acids, 40, 1271-1296.  
  18765922 A.M.Awama, P.Paracuellos, S.Laurent, C.Dissous, O.Marcillat, and P.Gouet (2008).
Crystallization and X-ray analysis of the Schistosoma mansoni guanidino kinase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 854-857.  
17028143 R.F.Epand, U.Schlattner, T.Wallimann, M.L.Lacombe, and R.M.Epand (2007).
Novel lipid transfer property of two mitochondrial proteins that bridge the inner and outer membranes.
  Biophys J, 92, 126-137.  
16283667 N.Vernoux, T.Granjon, O.Marcillat, F.Besson, and C.Vial (2006).
Interfacial behavior of cytoplasmic and mitochondrial creatine kinase oligomeric states.
  Biopolymers, 81, 270-281.  
16981706 P.F.Wang, A.J.Flynn, M.M.Naor, J.H.Jensen, G.Cui, K.M.Merz, G.L.Kenyon, and M.J.McLeish (2006).
Exploring the role of the active site cysteine in human muscle creatine kinase.
  Biochemistry, 45, 11464-11472.  
15215531 J.C.Pan, Z.Yu, X.Y.Su, Y.Q.Sun, X.M.Rao, and H.M.Zhou (2004).
Unassisted refolding of urea-denatured arginine kinase from shrimp Feneropenaeus chinensis: evidence for two equilibrium intermediates in the refolding pathway.
  Protein Sci, 13, 1892-1901.  
15044463 U.Schlattner, F.Gehring, N.Vernoux, M.Tokarska-Schlattner, D.Neumann, O.Marcillat, C.Vial, and T.Wallimann (2004).
C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase.
  J Biol Chem, 279, 24334-24342.  
12592023 C.L.Borders, K.M.MacGregor, P.L.Edmiston, E.R.Gbeddy, M.J.Thomenius, G.B.Mulligan, and M.J.Snider (2003).
Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase.
  Protein Sci, 12, 532-537.  
14622006 H.Mazon, O.Marcillat, E.Forest, and C.Vial (2003).
Changes in MM-CK conformational mobility upon formation of the ADP-Mg(2+)-NO(3)(-)-creatine transition state analogue complex as detected by hydrogen/deuterium exchange.
  Biochemistry, 42, 13596-13604.  
12621025 M.Dolder, B.Walzel, O.Speer, U.Schlattner, and T.Wallimann (2003).
Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation.
  J Biol Chem, 278, 17760-17766.  
12493833 M.S.Yousef, S.A.Clark, P.K.Pruett, T.Somasundaram, W.R.Ellington, and M.S.Chapman (2003).
Induced fit in guanidino kinases--comparison of substrate-free and transition state analog structures of arginine kinase.
  Protein Sci, 12, 103-111.
PDB code: 1m80
12732621 P.S.Pruett, A.Azzi, S.A.Clark, M.S.Yousef, J.L.Gattis, T.Somasundaram, W.R.Ellington, and M.S.Chapman (2003).
The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase.
  J Biol Chem, 278, 26952-26957.
PDB codes: 1p50 1p52
12401781 S.Wendt, U.Schlattner, and T.Wallimann (2003).
Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues.
  J Biol Chem, 278, 1125-1130.  
12454458 M.S.Yousef, F.Fabiola, J.L.Gattis, T.Somasundaram, and M.S.Chapman (2002).
Refinement of the arginine kinase transition-state analogue complex at 1.2 A resolution: mechanistic insights.
  Acta Crystallogr D Biol Crystallogr, 58, 2009-2017.
PDB code: 1m15
11173463 D.Tisi, B.Bax, and A.Loew (2001).
The three-dimensional structure of cytosolic bovine retinal creatine kinase.
  Acta Crystallogr D Biol Crystallogr, 57, 187-193.
PDB code: 1g0w
11258919 J.S.Cantwell, W.R.Novak, P.F.Wang, M.J.McLeish, G.L.Kenyon, and P.C.Babbitt (2001).
Mutagenesis of two acidic active site residues in human muscle creatine kinase: implications for the catalytic mechanism.
  Biochemistry, 40, 3056-3061.  
11154064 U.Schlattner, M.Eder, M.Dolder, Z.A.Khuchua, A.W.Strauss, and T.Wallimann (2000).
Divergent enzyme kinetics and structural properties of the two human mitochondrial creatine kinase isoenzymes.
  Biol Chem, 381, 1063-1070.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.