spacer
spacer

PDBsum entry 1qfm

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1qfm
Jmol
Contents
Protein chain
710 a.a. *
Ligands
SGL ×2
SGM ×2
GOL ×4
Waters ×887
* Residue conservation analysis
PDB id:
1qfm
Name: Hydrolase
Title: Prolyl oligopeptidase from porcine muscle
Structure: Protein (prolyl oligopeptidase). Chain: a. Synonym: prolyl endopeptidase, post-proline cleaving enzyme ec: 3.4.21.26
Source: Sus scrofa. Pig. Organism_taxid: 9823. Tissue: muscle. Cellular_location: cytoplasm. Other_details: porcine brain sequence was used for structur determination and refinement
Resolution:
1.40Å     R-factor:   0.190     R-free:   0.206
Authors: V.Fulop
Key ref:
V.Fülöp et al. (1998). Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell, 94, 161-170. PubMed id: 9695945 DOI: 10.1016/S0092-8674(00)81416-6
Date:
12-Apr-99     Release date:   13-May-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P23687  (PPCE_PIG) -  Prolyl endopeptidase
Seq:
Struc:
 
Seq:
Struc:
710 a.a.
710 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 5 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.4.21.26  - Prolyl oligopeptidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of Pro-|-Xaa >> Ala-|-Xaa in oligopeptides.
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     proteolysis   1 term 
  Biochemical function     hydrolase activity     5 terms  

 

 
DOI no: 10.1016/S0092-8674(00)81416-6 Cell 94:161-170 (1998)
PubMed id: 9695945  
 
 
Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis.
V.Fülöp, Z.Böcskei, L.Polgár.
 
  ABSTRACT  
 
Prolyl oligopeptidase is a large cytosolic enzyme that belongs to a new class of serine peptidases. The enzyme is involved in the maturation and degradation of peptide hormones and neuropeptides, which relate to the induction of amnesia. The 1.4 A resolution crystal structure is presented here. The enzyme contains a peptidase domain with an alpha/beta hydrolase fold, and its catalytic triad (Ser554, His680, Asp641) is covered by the central tunnel of an unusual beta propeller. This domain makes prolyl oligopeptidase an oligopeptidase by excluding large structured peptides from the active site. In this way, the propeller protects larger peptides and proteins from proteolysis in the cytosol. The structure is also obtained with a transition state inhibitor, which may facilitate drug design to treat memory disorders.
 
  Selected figure(s)  
 
Figure 4.
Figure 4. Comparison of the Fold of the Noncatalytic Domain of Prolyl Oligopeptidase with a Typical β-Propeller Structure(A) The protein chain of the β-propeller domain of prolyl oligopeptidase is colored as in Figure 2 and viewed perpendicular to that, down the pseudo 7-fold axis. The β sheets of the seven blades are joined in succession (β1/1 to β7/4, cf. Figure 1) around the central axis. The “Velcro” is not closed; there are only hydrophobic interactions between the first (blue) and last (green) blades. Residues (Lys82, Glu134, His180, Asp242, Lys389, and Lys390) narrowing the entrance to the tunnel of the propeller are shown in a ball-and-stick representation.(B) The structure of G-protein β subunit (PDB entry 1tbg). The “Velcro” is closed between the two termini of the polypeptide chain by the main chain hydrogen bonds between the N terminus (blue) and the three antiparallel β strands from the C terminus (green). (Drawn with MolScript and rendered with Raster3D.)
Figure 6.
Figure 6. Surface Representation of Prolyl OligopeptidaseThe molecular surface is superimposed on the polypeptide chain. The picture shows a slab of the molecule, hence the cropping of the chain. The large cavity extends from the central tunnel of the β propeller to the catalytic domain and is accessible through the narrow hole at the bottom of the propeller. The covalently bound inhibitor, Z-Pro-prolinal, is shown in a ball-and-stick representation. The molecular surface was calculated by the method published by [11], and the figure was prepared using XOBJECTS (M. E. M. Noble, Oxford, unpublished program).
 
  The above figures are reprinted by permission from Cell Press: Cell (1998, 94, 161-170) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21321761 H.Usuki, Y.Yamamoto, J.Arima, M.Iwabuchi, S.Miyoshi, T.Nitoda, and T.Hatanaka (2011).
Peptide bond formation by aminolysin-A catalysis: a simple approach to enzymatic synthesis of diverse short oligopeptides and biologically active puromycins.
  Org Biomol Chem, 9, 2327-2335.  
20941418 G.Palmieri, E.Langella, M.Gogliettino, M.Saviano, G.Pocsfalvi, and M.Rossi (2010).
A novel class of protease targets of phosphatidylethanolamine-binding proteins (PEBP): a study of the acylpeptide hydrolase and the PEBP inhibitor from the archaeon Sulfolobus solfataricus.
  Mol Biosyst, 6, 2498-2507.  
20383670 J.S.Gelman, and L.D.Fricker (2010).
Hemopressin and other bioactive peptides from cytosolic proteins: are these non-classical neuropeptides?
  AAPS J, 12, 279-289.  
20572019 K.M.Chung, J.H.Cheng, C.S.Suen, C.H.Huang, C.H.Tsai, L.H.Huang, Y.R.Chen, A.H.Wang, W.T.Jiaang, M.J.Hwang, and X.Chen (2010).
The dimeric transmembrane domain of prolyl dipeptidase DPP-IV contributes to its quaternary structure and enzymatic activities.
  Protein Sci, 19, 1627-1638.  
20926390 K.McLuskey, N.G.Paterson, N.D.Bland, N.W.Isaacs, and J.C.Mottram (2010).
Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor.
  J Biol Chem, 285, 39249-39259.
PDB code: 2xe4
20444688 M.Li, C.Chen, D.R.Davies, and T.K.Chiu (2010).
Induced-fit mechanism for prolyl endopeptidase.
  J Biol Chem, 285, 21487-21495.
PDB codes: 3iuj 3iul 3ium 3iun 3iuq 3iur 3ivm
19819899 N.I.Mohd Ismail, T.Yuasa, K.Yuasa, Y.Nambu, M.Nisimoto, M.Goto, H.Matsuki, M.Inoue, M.Nagahama, and A.Tsuji (2010).
A critical role for highly conserved Glu(610) residue of oligopeptidase B from Trypanosoma brucei in thermal stability.
  J Biochem, 147, 201-211.  
20397181 N.Kichik, T.Tarragó, and E.Giralt (2010).
Simultaneous (19)F NMR screening of prolyl oligopeptidase and dipeptidyl peptidase IV inhibitors.
  Chembiochem, 11, 1115-1119.  
20540760 S.M.Soisson, S.B.Patel, P.D.Abeywickrema, N.J.Byrne, R.E.Diehl, D.L.Hall, R.E.Ford, J.C.Reid, K.W.Rickert, J.M.Shipman, S.Sharma, and K.J.Lumb (2010).
Structural definition and substrate specificity of the S28 protease family: the crystal structure of human prolylcarboxypeptidase.
  BMC Struct Biol, 10, 16.
PDB code: 3n2z
20581844 S.Orlicky, X.Tang, V.Neduva, N.Elowe, E.D.Brown, F.Sicheri, and M.Tyers (2010).
An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase.
  Nat Biotechnol, 28, 733-737.
PDB code: 3mks
19282285 D.A.Berti, C.Morano, L.C.Russo, L.M.Castro, F.M.Cunha, X.Zhang, J.Sironi, C.F.Klitzke, E.S.Ferro, and L.D.Fricker (2009).
Analysis of intracellular substrates and products of thimet oligopeptidase in human embryonic kidney 293 cells.
  J Biol Chem, 284, 14105-14116.  
19332125 E.Di Daniel, C.P.Glover, E.Grot, M.K.Chan, T.H.Sanderson, J.H.White, C.L.Ellis, K.T.Gallagher, J.Uney, J.Thomas, P.R.Maycox, and A.W.Mudge (2009).
Prolyl oligopeptidase binds to GAP-43 and functions without its peptidase activity.
  Mol Cell Neurosci, 41, 373-382.  
19593439 G.Comellas, Z.Kaczmarska, T.Tarragó, M.Teixidó, and E.Giralt (2009).
Exploration of the one-bead one-compound methodology for the design of prolyl oligopeptidase substrates.
  PLoS One, 4, e6222.  
19389704 H.Luo, H.E.Hallen-Adams, and J.D.Walton (2009).
Processing of the Phalloidin Proprotein by Prolyl Oligopeptidase from the Mushroom Conocybe albipes.
  J Biol Chem, 284, 18070-18077.  
19820087 N.C.Ammerman, J.J.Gillespie, A.F.Neuwald, B.W.Sobral, and A.F.Azad (2009).
A typhus group-specific protease defies reductive evolution in rickettsiae.
  J Bacteriol, 191, 7609-7613.  
19875179 P.J.O'Reilly, M.T.Hardison, P.L.Jackson, X.Xu, R.J.Snelgrove, A.Gaggar, F.S.Galin, and J.E.Blalock (2009).
Neutrophils contain prolyl endopeptidase and generate the chemotactic peptide, PGP, from collagen.
  J Neuroimmunol, 217, 51-54.  
19687473 T.T.Myöhänen, J.A.García-Horsman, J.Tenorio-Laranga, and P.T.Männistö (2009).
Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity.
  J Histochem Cytochem, 57, 831-848.  
19798721 T.Tarragó, B.Claasen, N.Kichik, R.A.Rodriguez-Mias, M.Gairí, and E.Giralt (2009).
A cost-effective labeling strategy for the NMR study of large proteins: selective 15N-labeling of the tryptophan side chains of prolyl oligopeptidase.
  Chembiochem, 10, 2736-2739.  
19911840 W.M.Nolte, D.M.Tagore, W.S.Lane, and A.Saghatelian (2009).
Peptidomics of prolyl endopeptidase in the central nervous system.
  Biochemistry, 48, 11971-11981.  
18340504 A.Lupi, R.Tenni, A.Rossi, G.Cetta, and A.Forlino (2008).
Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations.
  Amino Acids, 35, 739-752.  
18063573 E.Severi, A.Müller, J.R.Potts, A.Leech, D.Williamson, K.S.Wilson, and G.H.Thomas (2008).
Sialic acid mutarotation is catalyzed by the Escherichia coli beta-propeller protein YjhT.
  J Biol Chem, 283, 4841-4849.
PDB code: 2uvk
18426487 L.Gutierrez, M.Castelain, J.L.Verdeil, G.Conejero, and O.Van Wuytswinkel (2008).
A possible role of prolyl oligopeptidase during Linum usitatissimum (flax) seed development.
  Plant Biol (Stuttg), 10, 398-402.  
18820015 Y.Nakajima, K.Ito, T.Toshima, T.Egawa, H.Zheng, H.Oyama, Y.F.Wu, E.Takahashi, K.Kyono, and T.Yoshimoto (2008).
Dipeptidyl aminopeptidase IV from Stenotrophomonas maltophilia exhibits activity against a substrate containing a 4-hydroxyproline residue.
  J Bacteriol, 190, 7819-7829.
PDB code: 2ecf
17068815 C.Rummey, and G.Metz (2007).
Homology models of dipeptidyl peptidases 8 and 9 with a focus on loop predictions near the active site.
  Proteins, 66, 160-171.  
17530480 H.L.de Matos Guedes, M.P.Carneiro, D.C.Gomes, B.Rossi-Bergmanmn, and S.Giovanni de Simone (2007).
Oligopeptidase B from L. amazonensis: molecular cloning, gene expression analysis and molecular model.
  Parasitol Res, 101, 853-863.  
18074461 H.L.de Matos Guedes, M.P.Duarte Carneiro, D.C.de Oliveira Gomes, B.Rossi-Bergmann, and S.Giovanni De-Simone (2007).
Oligopeptidase B from Leishmania amazonensis: molecular cloning, gene expression analysis and molecular model.
  Parasitol Res, 101, 865-875.  
17434424 H.S.Lee, Y.J.Kim, Y.Cho, S.J.Kim, J.H.Lee, and S.G.Kang (2007).
Characterization of prolyl oligopeptidase from hyperthermophilic archaeon Thermococcus sp. NA1.
  J Biosci Bioeng, 103, 221-228.  
17165156 I.Belda, S.Madurga, T.Tarragó, X.Llorà, and E.Giralt (2007).
Evolutionary computation and multimodal search: a good combination to tackle molecular diversity in the field of peptide design.
  Mol Divers, 11, 7.  
17242511 J.Bosch, T.Tamura, N.Tamura, W.Baumeister, and L.O.Essen (2007).
The beta-propeller domain of the trilobed protease from Pyrococcus furiosus reveals an open Velcro topology.
  Acta Crystallogr D Biol Crystallogr, 63, 179-187.
PDB code: 2gop
17318184 N.Bhutani, P.Venkatraman, and A.L.Goldberg (2007).
Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation.
  EMBO J, 26, 1385-1396.  
17623862 T.Juhász, Z.Szeltner, and L.Polgár (2007).
Truncated prolyl oligopeptidase from Pyrococcus furiosus.
  Proteins, 69, 633-643.  
15948139 A.Tsuji, T.Yoshimoto, K.Yuasa, and Y.Matsuda (2006).
Protamine: a unique and potent inhibitor of oligopeptidase B.
  J Pept Sci, 12, 65-71.  
  16754966 C.Y.Yang, K.H.Chin, C.C.Chou, A.H.Wang, and S.H.Chou (2006).
Structure of XC6422 from Xanthomonas campestris at 1.6 A resolution: a small serine alpha/beta-hydrolase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 498-503.
PDB code: 2fuk
  16880564 D.Rea, C.Hazell, N.W.Andrews, R.E.Morty, and V.Fülöp (2006).
Expression, purification and preliminary crystallographic analysis of oligopeptidase B from Trypanosoma brucei.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 808-810.  
16385448 J.Jaeken, K.Martens, I.Francois, F.Eyskens, C.Lecointre, R.Derua, S.Meulemans, J.W.Slootstra, E.Waelkens, F.de Zegher, J.W.Creemers, and G.Matthijs (2006).
Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome.
  Am J Hum Genet, 78, 38-51.  
16885166 K.Ito, Y.Nakajima, Y.Onohara, M.Takeo, K.Nakashima, F.Matsubara, T.Ito, and T.Yoshimoto (2006).
Crystal structure of aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli and conformational change of methionine 260 involved in substrate recognition.
  J Biol Chem, 281, 33664-33676.
PDB codes: 2dq6 2dqm
16913837 K.Martens, R.Derua, S.Meulemans, E.Waelkens, J.Jaeken, G.Matthijs, and J.W.Creemers (2006).
PREPL: a putative novel oligopeptidase propelled into the limelight.
  Biol Chem, 387, 879-883.  
  16511202 H.Wright, A.L.Kiss, Z.Szeltner, L.Polgár, and V.Fülöp (2005).
Crystallization and preliminary crystallographic analysis of porcine acylaminoacyl peptidase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 942-944.  
16267689 I.Belda, S.Madurga, X.Llorà, M.Martinell, T.Tarragó, M.G.Piqueras, E.Nicolás, and E.Giralt (2005).
ENPDA: an evolutionary structure-based de novo peptide design algorithm.
  J Comput Aided Mol Des, 19, 585-601.  
15738423 L.Shan, I.I.Mathews, and C.Khosla (2005).
Structural and mechanistic analysis of two prolyl endopeptidases: role of interdomain dynamics in catalysis and specificity.
  Proc Natl Acad Sci U S A, 102, 3599-3604.
PDB codes: 1yr2 2bkl
15971204 M.Fuxreiter, C.Magyar, T.Juhász, Z.Szeltner, L.Polgár, and I.Simon (2005).
Flexibility of prolyl oligopeptidase: molecular dynamics and molecular framework analysis of the potential substrate pathways.
  Proteins, 60, 504-512.  
15678420 M.Groll, M.Bochtler, H.Brandstetter, T.Clausen, and R.Huber (2005).
Molecular machines for protein degradation.
  Chembiochem, 6, 222-256.  
15659099 M.Verhaest, W.V.Ende, K.L.Roy, C.J.De Ranter, A.V.Laere, and A.Rabijns (2005).
X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus.
  Plant J, 41, 400-411.
PDB code: 1st8
15994304 P.Goettig, H.Brandstetter, M.Groll, W.Göhring, P.V.Konarev, D.I.Svergun, R.Huber, and J.S.Kim (2005).
X-ray snapshots of peptide processing in mutants of tricorn-interacting factor F1 from Thermoplasma acidophilum.
  J Biol Chem, 280, 33387-33396.
PDB codes: 1xqv 1xqw 1xqx 1xqy 1xrl 1xrm 1xrn 1xro 1xrp 1xrq 1xrr
15819895 P.Rigolet, X.G.Xi, S.Rety, and J.F.Chich (2005).
The structural comparison of the bacterial PepX and human DPP-IV reveals sites for the design of inhibitors of PepX activity.
  FEBS J, 272, 2050-2059.  
15644339 R.E.Morty, R.Pellé, I.Vadász, G.L.Uzcanga, W.Seeger, and J.Bubis (2005).
Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts.
  J Biol Chem, 280, 10925-10937.  
15838896 T.Tarragó, E.Sabidó, M.J.Kogan, E.de Oliveira, and E.Giralt (2005).
Primary structure, recombinant expression and homology modelling of human brain prolyl oligopeptidase, an important therapeutic target in the treatment of neuropsychiatric diseases.
  J Pept Sci, 11, 283-287.  
15448155 C.H.Chien, L.H.Huang, C.Y.Chou, Y.S.Chen, Y.S.Han, G.G.Chang, P.H.Liang, and X.Chen (2004).
One site mutation disrupts dimer formation in human DPP-IV proteins.
  J Biol Chem, 279, 52338-52345.  
15388936 D.Rea, A.M.Lambeir, Y.Kumagai, I.De Meester, S.Scharpé, and V.Fülöp (2004).
Expression, purification and preliminary crystallographic analysis of dipeptidyl peptidase IV from Porphyromonas gingivalis.
  Acta Crystallogr D Biol Crystallogr, 60, 1871-1873.  
14986307 G.Bellemère, H.Vaudry, L.Mounien, I.Boutelet, and S.Jégou (2004).
Localization of the mRNA encoding prolyl endopeptidase in the rat brain and pituitary.
  J Comp Neurol, 471, 128-143.  
15454437 H.H.Jerng, Y.Qian, and P.J.Pfaffinger (2004).
Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10).
  Biophys J, 87, 2380-2396.  
15206935 J.I.Venäläinen, R.O.Juvonen, and P.T.Männistö (2004).
Evolutionary relationships of the prolyl oligopeptidase family enzymes.
  Eur J Biochem, 271, 2705-2715.  
15175333 J.R.Bjelke, J.Christensen, S.Branner, N.Wagtmann, C.Olsen, A.B.Kanstrup, and H.B.Rasmussen (2004).
Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV.
  J Biol Chem, 279, 34691-34697.
PDB codes: 1tk3 1tkr 1to7 1u8e
14718659 K.Aertgeerts, S.Ye, M.G.Tennant, M.L.Kraus, J.Rogers, B.C.Sang, R.J.Skene, D.R.Webb, and G.S.Prasad (2004).
Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation.
  Protein Sci, 13, 412-421.
PDB codes: 1r9m 1r9n
15150269 K.Mohri, S.Vorobiev, A.A.Fedorov, S.C.Almo, and S.Ono (2004).
Identification of functional residues on Caenorhabditis elegans actin-interacting protein 1 (UNC-78) for disassembly of actin depolymerizing factor/cofilin-bound actin filaments.
  J Biol Chem, 279, 31697-31707.
PDB codes: 1nr0 1pev
15153102 L.G.Gebhard, F.U.Carrizo, A.L.Stern, N.I.Burgardt, J.Faivovich, E.Lavilla, and M.R.Ermácora (2004).
A Kazal prolyl endopeptidase inhibitor isolated from the skin of Phyllomedusa sauvagii.
  Eur J Biochem, 271, 2117-2126.  
15296741 M.Bartlam, G.Wang, H.Yang, R.Gao, X.Zhao, G.Xie, S.Cao, Y.Feng, and Z.Rao (2004).
Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1.
  Structure, 12, 1481-1488.
PDB codes: 1ve6 1ve7
15313476 P.J.Collins, G.McMahon, P.O'Brien, and B.O'Connor (2004).
Purification, identification and characterisation of seprase from bovine serum.
  Int J Biochem Cell Biol, 36, 2320-2333.  
14754895 P.Towler, B.Staker, S.G.Prasad, S.Menon, J.Tang, T.Parsons, D.Ryan, M.Fisher, D.Williams, N.A.Dales, M.A.Patane, and M.W.Pantoliano (2004).
ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis.
  J Biol Chem, 279, 17996-18007.
PDB codes: 1r42 1r4l
12655644 B.Eisenhaber, S.Maurer-Stroh, M.Novatchkova, G.Schneider, and F.Eisenhaber (2003).
Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins.
  Bioessays, 25, 367-385.  
12482750 D.Chandu, A.Kumar, and D.Nandi (2003).
PepN, the major Suc-LLVY-AMC-hydrolyzing enzyme in Escherichia coli, displays functional similarity with downstream processing enzymes in Archaea and eukarya. Implications in cytosolic protein degradation.
  J Biol Chem, 278, 5548-5556.  
12483204 H.B.Rasmussen, S.Branner, F.C.Wiberg, and N.Wagtmann (2003).
Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog.
  Nat Struct Biol, 10, 19-25.
PDB code: 1n1m
12595736 H.Hiramatsu, K.Kyono, H.Shima, C.Fukushima, S.Sugiyama, K.Inaka, A.Yamamoto, and R.Shimizu (2003).
Crystallization and preliminary X-ray study of human dipeptidyl peptidase IV (DPPIV).
  Acta Crystallogr D Biol Crystallogr, 59, 595-596.  
12941425 J.S.Rosenblum, and J.W.Kozarich (2003).
Prolyl peptidases: a serine protease subfamily with high potential for drug discovery.
  Curr Opin Chem Biol, 7, 496-504.  
12490884 M.D.Gorrell (2003).
First bite.
  Nat Struct Biol, 10, 3-5.  
12690074 M.Engel, T.Hoffmann, L.Wagner, M.Wermann, U.Heiser, R.Kiefersauer, R.Huber, W.Bode, H.U.Demuth, and H.Brandstetter (2003).
The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism.
  Proc Natl Acad Sci U S A, 100, 5063-5068.
PDB codes: 1orv 1orw
12906826 R.Thoma, B.Löffler, M.Stihle, W.Huber, A.Ruf, and M.Hennig (2003).
Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV.
  Structure, 11, 947-959.
PDB codes: 1nu6 1nu8
12752434 S.Lorey, A.Stöckel-Maschek, J.Faust, W.Brandt, B.Stiebitz, M.D.Gorrell, T.Kähne, C.Mrestani-Klaus, S.Wrenger, D.Reinhold, S.Ansorge, and K.Neubert (2003).
Different modes of dipeptidyl peptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1 Tat indicate at least two inhibitor binding sites.
  Eur J Biochem, 270, 2147-2156.  
12684501 T.R.Barends, J.J.Polderman-Tijmes, P.A.Jekel, C.M.Hensgens, E.J.de Vries, D.B.Janssen, and B.W.Dijkstra (2003).
The sequence and crystal structure of the alpha-amino acid ester hydrolase from Xanthomonas citri define a new family of beta-lactam antibiotic acylases.
  J Biol Chem, 278, 23076-23084.
PDB code: 1mpx
12842041 W.K.Wang, V.Tereshko, P.Boccuni, D.MacGrogan, S.D.Nimer, and D.J.Patel (2003).
Malignant brain tumor repeats: a three-leaved propeller architecture with ligand/peptide binding pockets.
  Structure, 11, 775-789.
PDB codes: 1oyx 1oz2 1oz3
14514675 Z.Szeltner, D.Rea, V.Renner, L.Juliano, V.Fülop, and L.Polgár (2003).
Electrostatic environment at the active site of prolyl oligopeptidase is highly influential during substrate binding.
  J Biol Chem, 278, 48786-48793.
PDB codes: 1uoo 1uop 1uoq
12025410 A.Kimura, H.Matsui, and T.Takahashi (2002).
Expression and localization of prolyl oligopeptidase in mouse testis and its possible involvement in sperm motility.
  Zoolog Sci, 19, 93.  
11933065 B.Reva, A.Finkelstein, and S.Topiol (2002).
Threading with chemostructural restrictions method for predicting fold and functionally significant residues: application to dipeptidylpeptidase IV (DPP-IV).
  Proteins, 47, 180-193.  
12198486 D.Nurizzo, J.P.Turkenburg, S.J.Charnock, S.M.Roberts, E.J.Dodson, V.A.McKie, E.J.Taylor, H.J.Gilbert, and G.J.Davies (2002).
Cellvibrio japonicus alpha-L-arabinanase 43A has a novel five-blade beta-propeller fold.
  Nat Struct Biol, 9, 665-668.
PDB codes: 1gyd 1gye 1gyh
12437101 H.Brandstetter, J.S.Kim, M.Groll, P.Göttig, and R.Huber (2002).
Structural basis for the processive protein degradation by tricorn protease.
  Biol Chem, 383, 1157-1165.  
12444969 I.Schulz, B.Gerhartz, A.Neubauer, A.Holloschi, U.Heiser, M.Hafner, and H.U.Demuth (2002).
Modulation of inositol 1,4,5-triphosphate concentration by prolyl endopeptidase inhibition.
  Eur J Biochem, 269, 5813-5820.  
12011065 J.J.Polderman-Tijmes, P.A.Jekel, C.M.Jeronimus-Stratingh, A.P.Bruins, J.M.Van Der Laan, T.Sonke, and D.B.Janssen (2002).
Identification of the catalytic residues of alpha-amino acid ester hydrolase from Acetobacter turbidans by labeling and site-directed mutagenesis.
  J Biol Chem, 277, 28474-28482.  
11742345 N.A.Larsen, J.M.Turner, J.Stevens, S.J.Rosser, A.Basran, R.A.Lerner, N.C.Bruce, and I.A.Wilson (2002).
Crystal structure of a bacterial cocaine esterase.
  Nat Struct Biol, 9, 17-21.
PDB codes: 1ju3 1ju4
12374735 P.Goettig, M.Groll, J.S.Kim, R.Huber, and H.Brandstetter (2002).
Structures of the tricorn-interacting aminopeptidase F1 with different ligands explain its catalytic mechanism.
  EMBO J, 21, 5343-5352.
PDB codes: 1mt3 1mtz 1mu0
12029050 R.E.Morty, V.Fülöp, and N.W.Andrews (2002).
Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium.
  J Bacteriol, 184, 3329-3337.  
11900553 T.Juhász, Z.Szeltner, V.Renner, and L.Polgár (2002).
Role of the oxyanion binding site and subsites S1 and S2 in the catalysis of oligopeptidase B, a novel target for antimicrobial chemotherapy.
  Biochemistry, 41, 4096-4106.  
11937049 Z.Jawad, and M.Paoli (2002).
Novel sequences propel familiar folds.
  Structure, 10, 447-454.  
12228249 Z.Szeltner, D.Rea, T.Juhász, V.Renner, Z.Mucsi, G.Orosz, V.Fülöp, and L.Polgár (2002).
Substrate-dependent competency of the catalytic triad of prolyl oligopeptidase.
  J Biol Chem, 277, 44597-44605.
PDB codes: 1o6f 1o6g
12202494 Z.Szeltner, D.Rea, V.Renner, V.Fulop, and L.Polgar (2002).
Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. Site specific mutagenesis at the oxyanion binding site.
  J Biol Chem, 277, 42613-42622.
PDB codes: 1h2w 1h2x 1h2y 1h2z
11248043 C.K.Brown, K.Madauss, W.Lian, M.R.Beck, W.D.Tolbert, and D.W.Rodgers (2001).
Structure of neurolysin reveals a deep channel that limits substrate access.
  Proc Natl Acad Sci U S A, 98, 3127-3132.
PDB code: 1i1i
11719810 H.Brandstetter, J.S.Kim, M.Groll, and R.Huber (2001).
Crystal structure of the tricorn protease reveals a protein disassembly line.
  Nature, 414, 466-470.
PDB code: 1k32
11825690 M.J.Pallen, A.C.Lam, and N.Loman (2001).
Tricorn-like proteases in bacteria.
  Trends Microbiol, 9, 518-521.  
11347893 N.Tamura, G.Pfeifer, W.Baumeister, and T.Tamura (2001).
Tricorn protease in bacteria: characterization of the enzyme from Streptomyces coelicolor.
  Biol Chem, 382, 449-458.  
11598112 P.Grellier, S.Vendeville, R.Joyeau, I.M.Bastos, H.Drobecq, F.Frappier, A.R.Teixeira, J.Schrével, E.Davioud-Charvet, C.Sergheraert, and J.M.Santana (2001).
Trypanosoma cruzi prolyl oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes.
  J Biol Chem, 276, 47078-47086.  
11359780 T.L.Davis, I.Rabinovitz, B.W.Futscher, M.Schnölzer, F.Burger, Y.Liu, M.Kulesz-Martin, and A.E.Cress (2001).
Identification of a novel structural variant of the alpha 6 integrin.
  J Biol Chem, 276, 26099-26106.  
11284698 V.Oliveira, M.Campos, R.L.Melo, E.S.Ferro, A.C.Camargo, M.A.Juliano, and L.Juliano (2001).
Substrate specificity characterization of recombinant metallo oligo-peptidases thimet oligopeptidase and neurolysin.
  Biochemistry, 40, 4417-4425.  
10766975 A.Kimura, and T.Takahashi (2000).
cDNA cloning of rat prolyl oligopeptidase and its expression in the ovary during the estrous cycle.
  J Exp Zool, 286, 656-665.  
10951221 C.Durinx, A.M.Lambeir, E.Bosmans, J.B.Falmagne, R.Berghmans, A.Haemers, S.Scharpé, and I.De Meester (2000).
Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides.
  Eur J Biochem, 267, 5608-5613.  
10931192 J.Dobers, S.Grams, W.Reutter, and H.Fan (2000).
Roles of cysteines in rat dipeptidyl peptidase IV/CD26 in processing and proteolytic activity.
  Eur J Biochem, 267, 5093-5100.  
11106384 K.Håkansson, A.H.Wang, and C.G.Miller (2000).
The structure of aspartyl dipeptidase reveals a unique fold with a Ser-His-Glu catalytic triad.
  Proc Natl Acad Sci U S A, 97, 14097-14102.
PDB codes: 1fy2 1fye
10758287 R.Joyeau, C.Maoulida, C.Guillet, F.Frappier, A.R.Teixeira, J.Schrével, J.Santana, and P.Grellier (2000).
Synthesis and activity of pyrrolidinyl- and thiazolidinyl-dipeptide derivatives as inhibitors of the Tc80 prolyl oligopeptidase from Trypanosoma cruzi.
  Eur J Med Chem, 35, 257-266.  
11256612 V.Fülöp, Z.Szeltner, and L.Polgár (2000).
Catalysis of serine oligopeptidases is controlled by a gating filter mechanism.
  EMBO Rep, 1, 277-281.
PDB code: 1e5t
10649444 V.Oliveira, E.S.Ferro, M.D.Gomes, M.E.Oshiro, P.C.Almeida, M.A.Juliano, and L.Juliano (2000).
Characterization of thiol-, aspartyl-, and thiol-metallo-peptidase activities in Madin-Darby canine kidney cells.
  J Cell Biochem, 76, 478-488.  
11092934 W.Lian, G.Chen, D.Wu, C.K.Brown, K.Madauss, L.B.Hersh, and D.W.Rodgers (2000).
Crystallization and preliminary analysis of neurolysin.
  Acta Crystallogr D Biol Crystallogr, 56, 1644-1646.  
  10716187 Z.Szeltner, V.Renner, and L.Polgár (2000).
Substrate- and pH-dependent contribution of oxyanion binding site to the catalysis of prolyl oligopeptidase, a paradigm of the serine oligopeptidase family.
  Protein Sci, 9, 353-360.  
10446174 A.Kimura, I.Yoshida, N.Takagi, and T.Takahashi (1999).
Structure and localization of the mouse prolyl oligopeptidase gene.
  J Biol Chem, 274, 24047-24053.  
10470035 B.Tomkinson (1999).
Tripeptidyl peptidases: enzymes that count.
  Trends Biochem Sci, 24, 355-359.  
10583373 C.A.Abbott, G.W.McCaughan, M.T.Levy, W.B.Church, and M.D.Gorrell (1999).
Binding to human dipeptidyl peptidase IV by adenosine deaminase and antibodies that inhibit ligand binding involves overlapping, discontinuous sites on a predicted beta propeller domain.
  Eur J Biochem, 266, 798-810.  
10545334 C.Abergel, E.Bouveret, J.M.Claverie, K.Brown, A.Rigal, C.Lazdunski, and H.Bénédetti (1999).
Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 A resolution.
  Structure, 7, 1291-1300.
PDB code: 1crz
  10518749 C.P.Ponting, and M.J.Pallen (1999).
beta-propeller repeats and a PDZ domain in the tricorn protease: predicted self-compartmentalisation and C-terminal polypeptide-binding strategies of substrate selection.
  FEMS Microbiol Lett, 179, 447-451.  
10545093 F.X.Gomis-Rüth, V.Companys, Y.Qian, L.D.Fricker, J.Vendrell, F.X.Avilés, and M.Coll (1999).
Crystal structure of avian carboxypeptidase D domain II: a prototype for the regulatory metallocarboxypeptidase subfamily.
  EMBO J, 18, 5817-5826.
PDB code: 1qmu
10607665 M.Nardini, and B.W.Dijkstra (1999).
Alpha/beta hydrolase fold enzymes: the family keeps growing.
  Curr Opin Struct Biol, 9, 732-737.  
10404588 P.Heikinheimo, A.Goldman, C.Jeffries, and D.L.Ollis (1999).
Of barn owls and bankers: a lush variety of alpha/beta hydrolases.
  Structure, 7, R141-R146.  
10473566 R.E.Morty, J.D.Lonsdale-Eccles, J.Morehead, E.V.Caler, R.Mentele, E.A.Auerswald, T.H.Coetzer, N.W.Andrews, and B.A.Burleigh (1999).
Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases.
  J Biol Chem, 274, 26149-26156.  
10091698 S.Vendeville, L.Bourel, E.Davioud-Charvet, P.Grellier, B.Deprez, and C.Sergheraert (1999).
Automated parallel synthesis of a tetrahydroisoquinolin-based library: potential prolyl endopeptidase inhibitors.
  Bioorg Med Chem Lett, 9, 437-442.  
10607670 V.Fülöp, and D.T.Jones (1999).
Beta propellers: structural rigidity and functional diversity.
  Curr Opin Struct Biol, 9, 715-721.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.