PDBsum entry 1q0v

Go to PDB code: 
protein links
Transport binding PDB id
Protein chain
81 a.a. *
* Residue conservation analysis
PDB id:
Name: Transport binding
Title: Solution structure of tandem uims of vps27
Structure: Hydrophilic protein. Has cysteine rich putative zinc finger esential for function. Vps27p. Chain: a. Fragment: tandem uim. Engineered: yes
Source: Saccharomyces cerevisiae. Baker's yeast. Organism_taxid: 4932. Gene: vps27. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
NMR struc: 20 models
Authors: K.A.Swanson,R.S.Kang,S.D.Stamenova,L.Hicke,I.Radhakrishnan
Key ref: K.A.Swanson et al. (2003). Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J, 22, 4597-4606. PubMed id: 12970172
17-Jul-03     Release date:   23-Dec-03    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P40343  (VPS27_YEAST) -  Vacuolar protein sorting-associated protein 27
622 a.a.
81 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)


EMBO J 22:4597-4606 (2003)
PubMed id: 12970172  
Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation.
K.A.Swanson, R.S.Kang, S.D.Stamenova, L.Hicke, I.Radhakrishnan.
Monoubiquitylation is a well-characterized signal for the internalization and sorting of integral membrane proteins to distinct cellular organelles. Recognition and transmission of monoubiquitin signals is mediated by a variety of ubiquitin-binding motifs such as UIM, UBA, UEV, VHS and CUE in endocytic proteins. The yeast Vps27 protein requires two UIMs for efficient interactions with ubiquitin and for sorting cargo into multivesicular bodies. Here we show that the individual UIMs of Vps27 exist as autonomously folded alpha-helices that bind ubiquitin independently, non-cooperatively and with modest affinity. The Vps27 N-terminal UIM engages the Leu8-Ile44-Val70 hydrophobic patch of ubiquitin through a helical surface conserved in UIMs of diverse proteins, including that of the S5a proteasomal regulatory subunit. The Leu8-Ile44-Val70 ubiquitin surface is also the site of interaction for CUE and UBA domains in endocytic proteins, consistent with the view that ubiquitin-binding endocytic proteins act serially on the same monoubiquitylated cargo during transport from cell surface to the lysosome.

Literature references that cite this PDB file's key reference

  PubMed id Reference
20949063 A.X.Song, C.J.Zhou, Y.Peng, X.C.Gao, Z.R.Zhou, Q.S.Fu, J.Hong, D.H.Lin, and H.Y.Hu (2010).
Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains.
  PLoS One, 5, e13202.  
19939937 C.T.Archer, and T.Kodadek (2010).
The hydrophobic patch of ubiquitin is required to protect transactivator-promoter complexes from destabilization by the proteasomal ATPases.
  Nucleic Acids Res, 38, 789-796.  
20372977 F.Ferrage, K.Dutta, A.Shekhtman, and D.Cowburn (2010).
Structural determination of biomolecular interfaces by nuclear magnetic resonance of proteins with reduced proton density.
  J Biomol NMR, 47, 41-54.  
20653365 J.H.Hurley (2010).
The ESCRT complexes.
  Crit Rev Biochem Mol Biol, 45, 463-487.  
20092282 J.L.McConnell, G.R.Watkins, S.E.Soss, H.S.Franz, L.R.McCorvey, B.W.Spiller, W.J.Chazin, and B.E.Wadzinski (2010).
Alpha4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination.
  Biochemistry, 49, 1713-1718.  
20942953 M.Citarelli, S.Teotia, and R.S.Lamb (2010).
Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes.
  BMC Evol Biol, 10, 308.  
20159559 M.G.Bomar, S.D'Souza, M.Bienko, I.Dikic, G.C.Walker, and P.Zhou (2010).
Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1.
  Mol Cell, 37, 408-417.
PDB code: 2khu
20053359 N.G.Sgourakis, M.M.Patel, A.E.Garcia, G.I.Makhatadze, and S.A.McCallum (2010).
Conformational dynamics and structural plasticity play critical roles in the ubiquitin recognition of a UIM domain.
  J Mol Biol, 396, 1128-1144.
PDB code: 2kdi
21070969 N.Pashkova, L.Gakhar, S.C.Winistorfer, L.Yu, S.Ramaswamy, and R.C.Piper (2010).
WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins.
  Mol Cell, 40, 433-443.
PDB code: 3odt
19875440 S.S.Safadi, and G.S.Shaw (2010).
Differential interaction of the E3 ligase parkin with the proteasomal subunit S5a and the endocytic protein Eps15.
  J Biol Chem, 285, 1424-1434.  
20150893 X.Ren, and J.H.Hurley (2010).
VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo.
  EMBO J, 29, 1045-1054.
PDB code: 3ldz
19773779 I.Dikic, S.Wakatsuki, and K.J.Walters (2009).
Ubiquitin-binding domains - from structures to functions.
  Nat Rev Mol Cell Biol, 10, 659-671.  
19328070 J.J.Sims, and R.E.Cohen (2009).
Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80.
  Mol Cell, 33, 775-783.  
19305427 J.Nikkilä, K.A.Coleman, D.Morrissey, K.Pylkäs, H.Erkko, T.E.Messick, S.M.Karppinen, A.Amelina, R.Winqvist, and R.A.Greenberg (2009).
Familial breast cancer screening reveals an alteration in the RAP80 UIM domain that impairs DNA damage response function.
  Oncogene, 28, 1843-1852.  
19015238 J.Wu, M.S.Huen, L.Y.Lu, L.Ye, Y.Dou, M.Ljungman, J.Chen, and X.Yu (2009).
Histone ubiquitination associates with BRCA1-dependent DNA damage response.
  Mol Cell Biol, 29, 849-860.  
  20054405 L.V.Omelyanchuk, J.A.Pertseva, S.S.Burns, and L.S.Chang (2009).
Evolution and Origin of HRS, a Protein Interacting with Merlin, the Neurofibromatosis 2 Gene Product.
  Gene Regul Syst Bio, 3, 143-157.  
19165343 M.H.Lam, D.Urban-Grimal, A.Bugnicourt, J.F.Greenblatt, R.Haguenauer-Tsapis, and A.Emili (2009).
Interaction of the deubiquitinating enzyme Ubp2 and the e3 ligase Rsp5 is required for transporter/receptor sorting in the multivesicular body pathway.
  PLoS ONE, 4, e4259.  
19064641 O.Zgheib, K.Pataky, J.Brugger, and T.D.Halazonetis (2009).
An oligomerized 53BP1 tudor domain suffices for recognition of DNA double-strand breaks.
  Mol Cell Biol, 29, 1050-1058.  
19253304 P.Carbonell, R.Nussinov, and A.del Sol (2009).
Energetic determinants of protein binding specificity: insights into protein interaction networks.
  Proteomics, 9, 1744-1753.  
19423704 Q.S.Fu, C.J.Zhou, H.C.Gao, Y.J.Jiang, Z.R.Zhou, J.Hong, W.M.Yao, A.X.Song, D.H.Lin, and H.Y.Hu (2009).
Structural Basis for Ubiquitin Recognition by a Novel Domain from Human Phospholipase A2-activating Protein.
  J Biol Chem, 284, 19043-19052.
PDB codes: 2k89 2k8a 2k8b 2k8c
19372219 X.Li, G.S.Baillie, and M.D.Houslay (2009).
Mdm2 Directs the Ubiquitination of {beta}-Arrestin-sequestered cAMP Phosphodiesterase-4D5.
  J Biol Chem, 284, 16170-16182.  
19536136 Y.Sato, A.Yoshikawa, H.Mimura, M.Yamashita, A.Yamagata, and S.Fukai (2009).
Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80.
  EMBO J, 28, 2461-2468.
PDB code: 3a1q
17990982 A.L.Giannini, Y.Gao, and M.J.Bijlmakers (2008).
T-cell regulator RNF125/TRAC-1 belongs to a novel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain.
  Biochem J, 410, 101-111.  
18497827 P.Schreiner, X.Chen, K.Husnjak, L.Randles, N.Zhang, S.Elsasser, D.Finley, I.Dikic, K.J.Walters, and M.Groll (2008).
Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction.
  Nature, 453, 548-552.
PDB codes: 2r2y 2z59
18089292 S.C.Sahu, K.A.Swanson, R.S.Kang, K.Huang, K.Brubaker, K.Ratcliff, and I.Radhakrishnan (2008).
Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor.
  J Mol Biol, 375, 1444-1456.
PDB codes: 2rmr 2rms
18083189 Y.C.Kim, and G.Hummer (2008).
Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding.
  J Mol Biol, 375, 1416-1433.  
17919899 A.D.Capili, and C.D.Lima (2007).
Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways.
  Curr Opin Struct Biol, 17, 726-735.  
17368669 A.Haririnia, M.D'Onofrio, and D.Fushman (2007).
Mapping the interactions between Lys48 and Lys63-linked di-ubiquitins and a ubiquitin-interacting motif of S5a.
  J Mol Biol, 368, 753-766.  
17242378 B.C.Dickinson, R.Varadan, and D.Fushman (2007).
Effects of cyclization on conformational dynamics and binding properties of Lys48-linked di-ubiquitin.
  Protein Sci, 16, 369-378.  
17235285 C.Ottmann, L.Yasmin, M.Weyand, J.L.Veesenmeyer, M.H.Diaz, R.H.Palmer, M.S.Francis, A.R.Hauser, A.Wittinghofer, and B.Hallberg (2007).
Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis.
  EMBO J, 26, 902-913.
PDB code: 2o02
17623810 D.V.Babushok, K.Ohshima, E.M.Ostertag, X.Chen, Y.Wang, P.K.Mandal, N.Okada, C.S.Abrams, and H.H.Kazazian (2007).
A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids.
  Genome Res, 17, 1129-1138.  
17543868 G.Prag, H.Watson, Y.C.Kim, B.M.Beach, R.Ghirlando, G.Hummer, J.S.Bonifacino, and J.H.Hurley (2007).
The Vps27/Hse1 complex is a GAT domain-based scaffold for ubiquitin-dependent sorting.
  Dev Cell, 12, 973-986.
PDB code: 2pjw
17581863 J.Hu, S.G.Wittekind, and M.M.Barr (2007).
STAM and Hrs down-regulate ciliary TRP receptors.
  Mol Biol Cell, 18, 3277-3289.  
17135292 M.Curtiss, C.Jones, and M.Babst (2007).
Efficient cargo sorting by ESCRT-I and the subsequent release of ESCRT-I from multivesicular bodies requires the subunit Mvb12.
  Mol Biol Cell, 18, 636-645.  
17304240 M.G.Bomar, M.T.Pai, S.R.Tzeng, S.S.Li, and P.Zhou (2007).
Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta.
  EMBO Rep, 8, 247-251.
PDB code: 2i5o
17192262 M.Matsushita, N.N.Suzuki, K.Obara, Y.Fujioka, Y.Ohsumi, and F.Inagaki (2007).
Structure of Atg5.Atg16, a complex essential for autophagy.
  J Biol Chem, 282, 6763-6772.
PDB codes: 2dym 2dyo
17567738 la Cruz, F.C.Peterson, B.L.Lytle, and B.F.Volkman (2007).
Solution structure of a membrane-anchored ubiquitin-fold (MUB) protein from Homo sapiens.
  Protein Sci, 16, 1479-1484.
PDB code: 2gow
17450176 R.L.Williams, and S.Urbé (2007).
The emerging shape of the ESCRT machinery.
  Nat Rev Mol Cell Biol, 8, 355-368.  
17244534 S.D.Stamenova, M.E.French, Y.He, S.A.Francis, Z.B.Kramer, and L.Hicke (2007).
Ubiquitin binds to and regulates a subset of SH3 domains.
  Mol Cell, 25, 273-284.  
16524884 C.M.Hecker, M.Rabiller, K.Haglund, P.Bayer, and I.Dikic (2006).
Specification of SUMO1- and SUMO2-interacting motifs.
  J Biol Chem, 281, 16117-16127.  
16564012 F.E.Reyes-Turcu, J.R.Horton, J.E.Mullally, A.Heroux, X.Cheng, and K.D.Wilkinson (2006).
The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin.
  Cell, 124, 1197-1208.
PDB codes: 2g43 2g45
16497223 H.Barriere, C.Nemes, D.Lechardeur, M.Khan-Mohammad, K.Fruh, and G.L.Lukacs (2006).
Molecular basis of oligoubiquitin-dependent internalization of membrane proteins in Mammalian cells.
  Traffic, 7, 282-297.  
16428438 J.E.Mullally, T.Chernova, and K.D.Wilkinson (2006).
Doa1 is a Cdc48 adapter that possesses a novel ubiquitin binding domain.
  Mol Cell Biol, 26, 822-830.  
16689637 J.H.Hurley, and S.D.Emr (2006).
The ESCRT complexes: structure and mechanism of a membrane-trafficking network.
  Annu Rev Biophys Biomol Struct, 35, 277-298.  
16604062 K.Flick, S.Raasi, H.Zhang, J.L.Yen, and P.Kaiser (2006).
A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome.
  Nat Cell Biol, 8, 509-515.  
16499958 L.Penengo, M.Mapelli, A.G.Murachelli, S.Confalonieri, L.Magri, A.Musacchio, P.P.Di Fiore, S.Polo, and T.R.Schneider (2006).
Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin.
  Cell, 124, 1183-1195.
PDB codes: 2c7m 2c7n
16497222 M.J.Hawryluk, P.A.Keyel, S.K.Mishra, S.C.Watkins, J.E.Heuser, and L.M.Traub (2006).
Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein.
  Traffic, 7, 262-281.  
16518696 M.J.Lewis, L.F.Saltibus, D.D.Hau, W.Xiao, and L.Spyracopoulos (2006).
Structural basis for non-covalent interaction between ubiquitin and the ubiquitin conjugating enzyme variant human MMS2.
  J Biomol NMR, 34, 89.
PDB code: 1zgu
16507365 N.Jura, E.Scotto-Lavino, A.Sobczyk, and D.Bar-Sagi (2006).
Differential modification of Ras proteins by ubiquitination.
  Mol Cell, 21, 679-687.  
16407276 R.Mattera, Y.C.Tsai, A.M.Weissman, and J.S.Bonifacino (2006).
The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain.
  J Biol Chem, 281, 6874-6883.  
16462748 S.Hirano, M.Kawasaki, H.Ura, R.Kato, C.Raiborg, H.Stenmark, and S.Wakatsuki (2006).
Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting.
  Nat Struct Mol Biol, 13, 272-277.
PDB code: 2d3g
17057714 S.Hirano, N.Suzuki, T.Slagsvold, M.Kawasaki, D.Trambaiolo, R.Kato, H.Stenmark, and S.Wakatsuki (2006).
Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain.
  Nat Struct Mol Biol, 13, 1031-1032.
PDB code: 2dx5
16518384 S.L.Alam, and W.I.Sundquist (2006).
Two new structures of Ub-receptor complexes. U2.
  Nat Struct Mol Biol, 13, 186-188.  
16462746 S.Lee, Y.C.Tsai, R.Mattera, W.J.Smith, M.S.Kostelansky, A.M.Weissman, J.S.Bonifacino, and J.H.Hurley (2006).
Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5.
  Nat Struct Mol Biol, 13, 264-271.
PDB codes: 2fid 2fif
16488176 V.Winter, and M.T.Hauser (2006).
Exploring the ESCRTing machinery in eukaryotes.
  Trends Plant Sci, 11, 115-123.  
15837191 A.Ohno, J.Jee, K.Fujiwara, T.Tenno, N.Goda, H.Tochio, H.Kobayashi, H.Hiroaki, and M.Shirakawa (2005).
Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition.
  Structure, 13, 521-532.
PDB code: 1wr1
15772086 C.Tsui, A.Raguraj, and C.M.Pickart (2005).
Ubiquitin binding site of the ubiquitin E2 variant (UEV) protein Mms2 is required for DNA damage tolerance in the yeast RAD6 pathway.
  J Biol Chem, 280, 19829-19835.  
15767585 D.H.Lin, H.Sterling, Z.Wang, E.Babilonia, B.Yang, K.Dong, S.C.Hebert, G.Giebisch, and W.H.Wang (2005).
ROMK1 channel activity is regulated by monoubiquitination.
  Proc Natl Acad Sci U S A, 102, 4306-4311.  
15694336 D.T.Huang, A.Paydar, M.Zhuang, M.B.Waddell, J.M.Holton, and B.A.Schulman (2005).
Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1.
  Mol Cell, 17, 341-350.
PDB code: 1y8x
15701688 G.Prag, S.Lee, R.Mattera, C.N.Arighi, B.M.Beach, J.S.Bonifacino, and J.H.Hurley (2005).
Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins.
  Proc Natl Acad Sci U S A, 102, 2334-2339.
PDB code: 1yd8
15935782 J.Kim, S.Sitaraman, A.Hierro, B.M.Beach, G.Odorizzi, and J.H.Hurley (2005).
Structural basis for endosomal targeting by the Bro1 domain.
  Dev Cell, 8, 937-947.
PDB code: 1zb1
16204249 J.Song, Z.Zhang, W.Hu, and Y.Chen (2005).
Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation.
  J Biol Chem, 280, 40122-40129.
PDB code: 2asq
16064137 L.Hicke, H.L.Schubert, and C.P.Hill (2005).
Ubiquitin-binding domains.
  Nat Rev Mol Cell Biol, 6, 610-621.  
15569240 M.Babst (2005).
A protein's final ESCRT.
  Traffic, 6, 2-9.  
15966896 M.Kawasaki, T.Shiba, Y.Shiba, Y.Yamaguchi, N.Matsugaki, N.Igarashi, M.Suzuki, R.Kato, K.Kato, K.Nakayama, and S.Wakatsuki (2005).
Molecular mechanism of ubiquitin recognition by GGA3 GAT domain.
  Genes Cells, 10, 639-654.
PDB code: 1wr6
15949443 R.Varadan, M.Assfalg, S.Raasi, C.Pickart, and D.Fushman (2005).
Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain.
  Mol Cell, 18, 687-698.
PDB code: 1zo6
15870296 S.Chupreta, S.Holmstrom, L.Subramanian, and J.A.Iñiguez-Lluhí (2005).
A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties.
  Mol Cell Biol, 25, 4272-4282.  
16210246 S.Gazdoiu, K.Yamoah, K.Wu, C.R.Escalante, I.Tappin, V.Bermudez, A.K.Aggarwal, J.Hurwitz, and Z.Q.Pan (2005).
Proximity-induced activation of human Cdc34 through heterologous dimerization.
  Proc Natl Acad Sci U S A, 102, 15053-15058.  
16007098 S.Raasi, R.Varadan, D.Fushman, and C.M.Pickart (2005).
Diverse polyubiquitin interaction properties of ubiquitin-associated domains.
  Nat Struct Mol Biol, 12, 708-714.  
15755741 T.Slagsvold, R.Aasland, S.Hirano, K.G.Bache, C.Raiborg, D.Trambaiolo, S.Wakatsuki, and H.Stenmark (2005).
Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain.
  J Biol Chem, 280, 19600-19606.  
15329733 A.Hierro, J.Sun, A.S.Rusnak, J.Kim, G.Prag, S.D.Emr, and J.H.Hurley (2004).
Structure of the ESCRT-II endosomal trafficking complex.
  Nature, 431, 221-225.
PDB code: 1u5t
15556404 C.M.Pickart, and D.Fushman (2004).
Polyubiquitin chains: polymeric protein signals.
  Curr Opin Chem Biol, 8, 610-616.  
15473838 D.J.Owen, B.M.Collins, and P.R.Evans (2004).
Adaptors for clathrin coats: structure and function.
  Annu Rev Cell Dev Biol, 20, 153-191.  
15473846 E.Morita, and W.I.Sundquist (2004).
Retrovirus budding.
  Annu Rev Cell Dev Biol, 20, 395-425.  
15044434 H.Teo, D.B.Veprintsev, and R.L.Williams (2004).
Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins.
  J Biol Chem, 279, 28689-28696.
PDB code: 1uzx
15388847 J.Song, L.K.Durrin, T.A.Wilkinson, T.G.Krontiris, and Y.Chen (2004).
Identification of a SUMO-binding motif that recognizes SUMO-modified proteins.
  Proc Natl Acad Sci U S A, 101, 14373-14378.  
15265035 M.Albrecht, M.Golatta, U.Wüllner, and T.Lengauer (2004).
Structural and functional analysis of ataxin-2 and ataxin-3.
  Eur J Biochem, 271, 3155-3170.  
15485897 M.J.Smith, S.Kulkarni, and T.Pawson (2004).
FF domains of CA150 bind transcription and splicing factors through multiple weak interactions.
  Mol Cell Biol, 24, 9274-9285.  
15494413 P.S.Bilodeau, S.C.Winistorfer, M.M.Allaman, K.Surendhran, W.R.Kearney, A.D.Robertson, and R.C.Piper (2004).
The GAT domains of clathrin-associated GGA proteins have two ubiquitin binding motifs.
  J Biol Chem, 279, 54808-54816.  
15039775 R.Puertollano, and J.S.Bonifacino (2004).
Interactions of GGA3 with the ubiquitin sorting machinery.
  Nat Cell Biol, 6, 244-251.  
15029239 S.L.Alam, J.Sun, M.Payne, B.D.Welch, B.K.Blake, D.R.Davis, H.H.Meyer, S.D.Emr, and W.I.Sundquist (2004).
Ubiquitin interactions of NZF zinc fingers.
  EMBO J, 23, 1411-1421.
PDB code: 1q5w
15155768 S.L.Miller, E.Malotky, and J.P.O'Bryan (2004).
Analysis of the role of ubiquitin-interacting motifs in ubiquitin binding and ubiquitylation.
  J Biol Chem, 279, 33528-33537.  
15053872 W.I.Sundquist, H.L.Schubert, B.N.Kelly, G.C.Hill, J.M.Holton, and C.P.Hill (2004).
Ubiquitin recognition by the human TSG101 protein.
  Mol Cell, 13, 783-789.
PDB code: 1s1q
14660606 Y.Shiba, Y.Katoh, T.Shiba, K.Yoshino, H.Takatsu, H.Kobayashi, H.W.Shin, S.Wakatsuki, and K.Nakayama (2004).
GAT (GGA and Tom1) domain responsible for ubiquitin binding and ubiquitination.
  J Biol Chem, 279, 7105-7111.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.