|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
281 a.a.
|
 |
|
|
|
|
|
|
|
302 a.a.
|
 |
|
|
|
|
|
|
|
241 a.a.
|
 |
|
|
|
|
|
|
|
(+ 10 more)
26 a.a.
|
 |
|
|
|
|
|
|
|
(+ 9 more)
30 a.a.
|
 |
|
|
|
|
|
|
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Photosynthesis
|
 |
|
Title:
|
 |
Crystal structure of rc-lh1 core complex from rhodopseudomonas palustris
|
|
Structure:
|
 |
Reaction center protein l chain. Chain: a. Synonym: photosynthetic reaction center l subunit. Reaction center protein m chain. Chain: b. Synonym: photosynthetic reaction center m subunit. Reaction center protein h chain. Chain: c. Synonym: photosynthetic reaction center h subunit.
|
|
Source:
|
 |
Rhodopseudomonas palustris. Organism_taxid: 1076. Strain: strain 2.1.6. Strain: strain 2.1.6
|
|
Biol. unit:
|
 |
34mer (from
)
|
|
Resolution:
|
 |
|
4.80Å
|
R-factor:
|
0.469
|
R-free:
|
0.491
|
|
|
Authors:
|
 |
A.W.Roszak,T.D.Howard,J.Southall,A.T.Gardiner,C.J.Law,N.W.Isaacs, R.J.Cogdell
|
Key ref:
|
 |
A.W.Roszak
et al.
(2003).
Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris.
Science,
302,
1969-1972.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
08-Jul-03
|
Release date:
|
02-Mar-04
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
No UniProt id for this chain
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Science
302:1969-1972
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris.
|
|
A.W.Roszak,
T.D.Howard,
J.Southall,
A.T.Gardiner,
C.J.Law,
N.W.Isaacs,
R.J.Cogdell.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystal structure at 4.8 angstrom resolution of the reaction center-light
harvesting 1 (RC-LH1) core complex from Rhodopseudomonas palustris shows the
reaction center surrounded by an oval LH1 complex that consists of 15 pairs of
transmembrane helical alpha- and beta-apoproteins and their coordinated
bacteriochlorophylls. Complete closure of the RC by the LH1 is prevented by a
single transmembrane helix, out of register with the array of inner LH1
alpha-apoproteins. This break, located next to the binding site in the reaction
center for the secondary electron acceptor ubiquinone (UQB), may provide a
portal through which UQB can transfer electrons to cytochrome b/c1.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Fig. 1. A representation of the major membrane proteins
involved in the light reactions of purple bacterial
photosynthesis. Photon energy (yellow arrows) captured by the
Bchla pigments (labeled B800 and B850 to indicate the
approximate wavelength in nanometers of maximal absorption) in
the antenna LH2 (purple) is passed to the LH1 Bchla (B880, red,
which also acts as a light-harvester), and then to a pair of
Bchla molecules (not shown) in the RC. Electron flow (red
arrows) occurs across the photosynthetic membrane from Bchla,
which is oxidized, to a primary electron acceptor, ubiquinone
(UQ[A], not shown), which is reduced. Subsequently, the electron
is transferred from UQ[A] to the secondary electron acceptor
ubiquinone (UQB, shown here as Q[B]). A second RC turnover
results in the complete reduction of UQ[B]^- to UQ[B]H[2]. The
fully reduced UQ[B]H[2] is replaced in the RC with an oxidized
ubiquinone (shown as Q) and passes its electrons to the next
redox component in the cyclic electron transport path, the
cytochrome b/c[1] complex (blue) (15). Electrons (e^-) are
returned to the RC through cytochrome c (Cyt c). A transmembrane
proton gradient is established and drives ATP synthase (orange),
producing ATP. ADP+Pi, adenosine diphosphate and inorganic
phosphate.
|
 |
Figure 3.
Fig. 3. Crystal packing of the RC-LH1 core complex (yellow)
viewed parallel to the membrane plane; all neighboring molecules
are colored blue.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2003,
302,
1969-1972)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
M.C.O'Sullivan,
J.K.Sprafke,
D.V.Kondratuk,
C.Rinfray,
T.D.Claridge,
A.Saywell,
M.O.Blunt,
J.N.O'Shea,
P.H.Beton,
M.Malfois,
and
H.L.Anderson
(2011).
Vernier templating and synthesis of a 12-porphyrin nano-ring.
|
| |
Nature,
469,
72-75.
|
 |
|
|
|
|
 |
M.Sener,
J.Strümpfer,
J.Hsin,
D.Chandler,
S.Scheuring,
C.N.Hunter,
and
K.Schulten
(2011).
Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems.
|
| |
Chemphyschem,
12,
518-531.
|
 |
|
|
|
|
 |
R.Ziessel,
and
A.Harriman
(2011).
Artificial light-harvesting antennae: electronic energy transfer by way of molecular funnels.
|
| |
Chem Commun (Camb),
47,
611-631.
|
 |
|
|
|
|
 |
S.Unterkofler,
T.Pflock,
J.Southall,
R.J.Cogdell,
and
J.Köhler
(2011).
Fluorescence Blinking of the RC-LH1 Complex from Rhodopseudomonas palustris.
|
| |
Chemphyschem,
12,
711-716.
|
 |
|
|
|
|
 |
T.A.Cohen Stuart,
M.Vengris,
V.I.Novoderezhkin,
R.J.Cogdell,
C.N.Hunter,
and
R.van Grondelle
(2011).
Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy.
|
| |
Biophys J,
100,
2226-2233.
|
 |
|
|
|
|
 |
C.Maeda,
P.Kim,
S.Cho,
J.K.Park,
J.M.Lim,
D.Kim,
J.Vura-Weis,
M.R.Wasielewski,
H.Shinokubo,
and
A.Osuka
(2010).
Large porphyrin squares from the self-assembly of meso-triazole-appended L-shaped meso-meso-linked Zn(II)-triporphyrins: synthesis and efficient energy transfer.
|
| |
Chemistry,
16,
5052-5061.
|
 |
|
|
|
|
 |
C.Mascle-Allemand,
K.Duquesne,
R.Lebrun,
S.Scheuring,
and
J.N.Sturgis
(2010).
Antenna mixing in photosynthetic membranes from Phaeospirillum molischianum.
|
| |
Proc Natl Acad Sci U S A,
107,
5357-5362.
|
 |
|
|
|
|
 |
E.Maligaspe,
T.Kumpulainen,
N.K.Subbaiyan,
M.E.Zandler,
H.Lemmetyinen,
N.V.Tkachenko,
and
F.D'Souza
(2010).
Electronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as photosynthetic composite of antenna-reaction center.
|
| |
Phys Chem Chem Phys,
12,
7434-7444.
|
 |
|
|
|
|
 |
I.McConnell,
G.Li,
and
G.W.Brudvig
(2010).
Energy conversion in natural and artificial photosynthesis.
|
| |
Chem Biol,
17,
434-447.
|
 |
|
|
|
|
 |
J.Hsin,
D.E.Chandler,
J.Gumbart,
C.B.Harrison,
M.Sener,
J.Strumpfer,
and
K.Schulten
(2010).
Self-assembly of photosynthetic membranes.
|
| |
Chemphyschem,
11,
1154-1159.
|
 |
|
|
|
|
 |
K.McLuskey,
A.W.Roszak,
Y.Zhu,
and
N.W.Isaacs
(2010).
Crystal structures of all-alpha type membrane proteins.
|
| |
Eur Biophys J,
39,
723-755.
|
 |
|
|
|
|
 |
K.R.Vinothkumar,
and
R.Henderson
(2010).
Structures of membrane proteins.
|
| |
Q Rev Biophys,
43,
65.
|
 |
|
|
|
|
 |
M.Morisue,
T.Morita,
and
Y.Kuroda
(2010).
Ligand-assisted J-type aggregates of zinc porphyrin: anticooperative molecular organization in self-assembled bolaamphiphile.
|
| |
Org Biomol Chem,
8,
3457-3463.
|
 |
|
|
|
|
 |
S.Amarie,
D.Lupo,
M.O.Lenz,
R.Saegesser,
R.Ghosh,
and
J.Wachtveitl
(2010).
Excitation energy pathways in the photosynthetic units of reaction center LM- and H-subunit deletion mutants of Rhodospirillum rubrum.
|
| |
Photosynth Res,
103,
141-151.
|
 |
|
|
|
|
 |
V.I.Novoderezhkin,
and
R.van Grondelle
(2010).
Physical origins and models of energy transfer in photosynthetic light-harvesting.
|
| |
Phys Chem Chem Phys,
12,
7352-7365.
|
 |
|
|
|
|
 |
Y.He,
X.Zeng,
S.Mukherjee,
S.Rajapaksha,
S.Kaplan,
and
H.P.Lu
(2010).
Revealing linear aggregates of light harvesting antenna proteins in photosynthetic membranes.
|
| |
Langmuir,
26,
307-313.
|
 |
|
|
|
|
 |
D.E.Chandler,
J.Gumbart,
J.D.Stack,
C.Chipot,
and
K.Schulten
(2009).
Membrane curvature induced by aggregates of LH2s and monomeric LH1s.
|
| |
Biophys J,
97,
2978-2984.
|
 |
|
|
|
|
 |
F.Ma,
Y.Kimura,
L.J.Yu,
P.Wang,
X.C.Ai,
Z.Y.Wang,
and
J.P.Zhang
(2009).
Specific Ca2+-binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling.
|
| |
FEBS J,
276,
1739-1749.
|
 |
|
|
|
|
 |
M.L.Ghirardi,
A.Dubini,
J.Yu,
and
P.C.Maness
(2009).
Photobiological hydrogen-producing systems.
|
| |
Chem Soc Rev,
38,
52-61.
|
 |
|
|
|
|
 |
M.Sener,
J.Hsin,
L.G.Trabuco,
E.Villa,
P.Qian,
C.N.Hunter,
and
K.Schulten
(2009).
Structural model and excitonic properties of the dimeric RC-LH1-PufX complex from Rhodobacter sphaeroides.
|
| |
Chem Phys,
357,
188-197.
|
 |
|
|
|
|
 |
R.J.Cogdell,
and
J.Köhler
(2009).
Use of single-molecule spectroscopy to tackle fundamental problems in biochemistry: using studies on purple bacterial antenna complexes as an example.
|
| |
Biochem J,
422,
193-205.
|
 |
|
|
|
|
 |
S.Oellerich,
and
J.Köhler
(2009).
Low-temperature single-molecule spectroscopy on photosynthetic pigment-protein complexes from purple bacteria.
|
| |
Photosynth Res,
101,
171-179.
|
 |
|
|
|
|
 |
V.Moulisová,
L.Luer,
S.Hoseinkhani,
T.H.Brotosudarmo,
A.M.Collins,
G.Lanzani,
R.E.Blankenship,
and
R.J.Cogdell
(2009).
Low light adaptation: energy transfer processes in different types of light harvesting complexes from Rhodopseudomonas palustris.
|
| |
Biophys J,
97,
3019-3028.
|
 |
|
|
|
|
 |
A.Y.Borisov,
and
A.V.Rybina
(2008).
Energy migration as related to the mutual position and orientation of donor and acceptor molecules in LH1 and LH2 antenna complexes of purple bacteria.
|
| |
Photosynth Res,
97,
215-222.
|
 |
|
|
|
|
 |
D.W.Lee,
Y.Oztürk,
A.Osyczka,
J.W.Cooley,
and
F.Daldal
(2008).
Cytochrome bc1-cy fusion complexes reveal the distance constraints for functional electron transfer between photosynthesis components.
|
| |
J Biol Chem,
283,
13973-13982.
|
 |
|
|
|
|
 |
F.Ma,
Y.Kimura,
X.H.Zhao,
Y.S.Wu,
P.Wang,
L.M.Fu,
Z.Y.Wang,
and
J.P.Zhang
(2008).
Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum.
|
| |
Biophys J,
95,
3349-3357.
|
 |
|
|
|
|
 |
J.Feng,
X.Li,
and
Y.Liu
(2008).
Effects of pH on the peripheral light-harvesting antenna complex for Rhodopseudomonas palustris.
|
| |
Sci China C Life Sci,
51,
760-766.
|
 |
|
|
|
|
 |
J.N.Sturgis,
and
R.A.Niederman
(2008).
Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling.
|
| |
Photosynth Res,
95,
269-278.
|
 |
|
|
|
|
 |
J.Seguin,
C.Mayer,
B.Robert,
and
V.Arluison
(2008).
Thermodynamics of the beta(2) association in light-harvesting complex I of Rhodospirillum rubrum. Implication of peptide identity in dimer stability.
|
| |
FEBS J,
275,
1240-1247.
|
 |
|
|
|
|
 |
K.Fujisawa,
A.Satake,
S.Hirota,
and
Y.Kobuke
(2008).
Construction of giant porphyrin macrorings self-assembled from thiophenylene-linked bisporphyrins for light-harvesting antennae.
|
| |
Chemistry,
14,
10735-10744.
|
 |
|
|
|
|
 |
K.Nakagawa,
S.Suzuki,
R.Fujii,
A.T.Gardiner,
R.J.Cogdell,
M.Nango,
and
H.Hashimoto
(2008).
Electrostatic effect of surfactant molecules on bacteriochlorophyll a and carotenoid binding sites in the LH1 complex isolated from Rhodospirillum rubrum S1 probed by Stark spectroscopy.
|
| |
Photosynth Res,
95,
345-351.
|
 |
|
|
|
|
 |
L.N.Liu,
T.J.Aartsma,
and
R.N.Frese
(2008).
Dimers of light-harvesting complex 2 from Rhodobacter sphaeroides characterized in reconstituted 2D crystals with atomic force microscopy.
|
| |
FEBS J,
275,
3157-3166.
|
 |
|
|
|
|
 |
M.F.Richter,
J.Baier,
J.Southall,
R.J.Cogdell,
S.Oellerich,
and
J.Köhler
(2008).
Spectral diffusion of the lowest exciton component in the core complex from Rhodopseudomonas palustris studied by single-molecule spectroscopy.
|
| |
Photosynth Res,
95,
285-290.
|
 |
|
|
|
|
 |
P.Maróti
(2008).
Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides.
|
| |
Eur Biophys J,
37,
1175-1184.
|
 |
|
|
|
|
 |
P.S.Chae,
M.J.Wander,
A.P.Bowling,
P.D.Laible,
and
S.H.Gellman
(2008).
Glycotripod amphiphiles for solubilization and stabilization of a membrane-protein superassembly: importance of branching in the hydrophilic portion.
|
| |
Chembiochem,
9,
1706-1709.
|
 |
|
|
|
|
 |
R.Fujii,
S.Shimonaka,
N.Uchida,
A.T.Gardiner,
R.J.Cogdell,
M.Sugisaki,
and
H.Hashimoto
(2008).
Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1.
|
| |
Photosynth Res,
95,
327-337.
|
 |
|
|
|
|
 |
R.N.Frese,
J.C.Pàmies,
J.D.Olsen,
S.Bahatyrova,
C.D.van der Weij-de Wit,
T.J.Aartsma,
C.Otto,
C.N.Hunter,
D.Frenkel,
and
R.van Grondelle
(2008).
Protein shape and crowding drive domain formation and curvature in biological membranes.
|
| |
Biophys J,
94,
640-647.
|
 |
|
|
|
|
 |
S.Kang,
M.Yasuda,
H.Miyasaka,
H.Hayashi,
M.Kawasaki,
T.Umeyama,
Y.Matano,
K.Yoshida,
S.Isoda,
and
H.Imahori
(2008).
Light harvesting and energy transfer in multiporphyrin-modified CdSe nanoparticles.
|
| |
ChemSusChem,
1,
254-261.
|
 |
|
|
|
|
 |
T.Ochiai,
T.Asaoka,
T.Kato,
S.Osaka,
T.Dewa,
K.Yamashita,
A.T.Gardiner,
H.Hashimoto,
and
M.Nango
(2008).
Molecular assembly of Zn porphyrin complexes using synthetic light-harvesting model polypeptides.
|
| |
Photosynth Res,
95,
353-361.
|
 |
|
|
|
|
 |
A.Aird,
J.Wrachtrup,
K.Schulten,
and
C.Tietz
(2007).
Possible pathway for ubiquinone shuttling in Rhodospirillum rubrum revealed by molecular dynamics simulation.
|
| |
Biophys J,
92,
23-33.
|
 |
|
|
|
|
 |
A.Satake,
and
Y.Kobuke
(2007).
Artificial photosynthetic systems: assemblies of slipped cofacial porphyrins and phthalocyanines showing strong electronic coupling.
|
| |
Org Biomol Chem,
5,
1679-1691.
|
 |
|
|
|
|
 |
B.M.Suijkerbuijk,
D.M.Tooke,
A.L.Spek,
G.van Koten,
and
R.J.Klein Gebbink
(2007).
One-dimensional, cofacial porphyrin polymers formed by self-assembly of meso-tetrakis(ERE donor) zinc(II) porphyrins.
|
| |
Chem Asian J,
2,
889-903.
|
 |
|
|
|
|
 |
J.Busselez,
M.Cottevieille,
P.Cuniasse,
F.Gubellini,
N.Boisset,
and
D.Lévy
(2007).
Structural basis for the PufX-mediated dimerization of bacterial photosynthetic core complexes.
|
| |
Structure,
15,
1674-1683.
|
 |
|
|
|
|
 |
M.F.Richter,
J.Baier,
J.Southall,
R.J.Cogdell,
S.Oellerich,
and
J.Köhler
(2007).
Refinement of the x-ray structure of the RC LH1 core complex from Rhodopseudomonas palustris by single-molecule spectroscopy.
|
| |
Proc Natl Acad Sci U S A,
104,
20280-20284.
|
 |
|
|
|
|
 |
M.F.Richter,
J.Baier,
T.Prem,
S.Oellerich,
F.Francia,
G.Venturoli,
D.Oesterhelt,
J.Southall,
R.J.Cogdell,
and
J.Köhler
(2007).
Symmetry matters for the electronic structure of core complexes from Rhodopseudomonas palustris and Rhodobacter sphaeroides PufX-.
|
| |
Proc Natl Acad Sci U S A,
104,
6661-6665.
|
 |
|
|
|
|
 |
M.R.Jones
(2007).
Lipids in photosynthetic reaction centres: structural roles and functional holes.
|
| |
Prog Lipid Res,
46,
56-87.
|
 |
|
|
|
|
 |
S.Mackowski,
S.Wörmke,
T.H.Brotosudarmo,
C.Jung,
R.G.Hiller,
H.Scheer,
and
C.Bräuchle
(2007).
Energy transfer in reconstituted peridinin-chlorophyll-protein complexes: ensemble and single-molecule spectroscopy studies.
|
| |
Biophys J,
93,
3249-3258.
|
 |
|
|
|
|
 |
S.Törnroth-Horsefield,
P.Gourdon,
R.Horsefield,
L.Brive,
N.Yamamoto,
H.Mori,
A.Snijder,
and
R.Neutze
(2007).
Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist.
|
| |
Structure,
15,
1663-1673.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Geyer
(2007).
On the effects of PufX on the absorption properties of the light-harvesting complexes of Rhodobacter sphaeroides.
|
| |
Biophys J,
93,
4374-4381.
|
 |
|
|
|
|
 |
V.Huber,
M.Lysetska,
and
F.Würthner
(2007).
Self-assembled single- and double-stack pi-aggregates of chlorophyll derivatives on highly ordered pyrolytic graphite.
|
| |
Small,
3,
1007-1014.
|
 |
|
|
|
|
 |
Y.Nakamura,
N.Aratani,
and
A.Osuka
(2007).
Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer.
|
| |
Chem Soc Rev,
36,
831-845.
|
 |
|
|
|
|
 |
C.C.You,
C.Hippius,
M.Grüne,
and
F.Würthner
(2006).
Light-harvesting metallosupramolecular squares composed of perylene bisimide walls and fluorescent antenna dyes.
|
| |
Chemistry,
12,
7510-7519.
|
 |
|
|
|
|
 |
C.F.Hogan,
A.R.Harris,
A.M.Bond,
J.Sly,
and
M.J.Crossley
(2006).
Electrochemical studies of porphyrin-appended dendrimers.
|
| |
Phys Chem Chem Phys,
8,
2058-2065.
|
 |
|
|
|
|
 |
C.L.Tavano,
and
T.J.Donohue
(2006).
Development of the bacterial photosynthetic apparatus.
|
| |
Curr Opin Microbiol,
9,
625-631.
|
 |
|
|
|
|
 |
D.L.Andrews,
and
R.G.Crisp
(2006).
Theory of directed electronic energy transfer.
|
| |
J Fluoresc,
16,
191-199.
|
 |
|
|
|
|
 |
J.Linnanto,
and
J.Korppi-Tommola
(2006).
Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes.
|
| |
Phys Chem Chem Phys,
8,
663-687.
|
 |
|
|
|
|
 |
L.J.Raiger-Iustman,
N.L.Kerber,
N.L.Pucheu,
M.J.Bornmann,
S.Kohler,
A.Labahn,
M.Tadros,
G.Drews,
and
A.F.García
(2006).
Characterization of a mutant strain of Rhodovulum sulfidophilum lacking the pufA and pufB genes encoding the polypeptides for the light-harvesting complex 1 (B 870).
|
| |
Arch Microbiol,
185,
407-415.
|
 |
|
|
|
|
 |
R.P.Ilagan,
T.W.Chapp,
R.G.Hiller,
F.P.Sharples,
T.Polívka,
and
H.A.Frank
(2006).
Optical spectroscopic studies of light-harvesting by pigment-reconstituted peridinin-chlorophyll-proteins at cryogenic temperatures.
|
| |
Photosynth Res,
90,
5.
|
 |
|
|
|
|
 |
R.van Grondelle,
and
V.I.Novoderezhkin
(2006).
Energy transfer in photosynthesis: experimental insights and quantitative models.
|
| |
Phys Chem Chem Phys,
8,
793-807.
|
 |
|
|
|
|
 |
S.Aygun-Sunar,
S.Mandaci,
H.G.Koch,
I.V.Murray,
H.Goldfine,
and
F.Daldal
(2006).
Ornithine lipid is required for optimal steady-state amounts of c-type cytochromes in Rhodobacter capsulatus.
|
| |
Mol Microbiol,
61,
418-435.
|
 |
|
|
|
|
 |
V.Iancu,
and
S.W.Hla
(2006).
Realization of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorophyll-a molecules.
|
| |
Proc Natl Acad Sci U S A,
103,
13718-13721.
|
 |
|
|
|
|
 |
Y.Saga,
and
H.Tamiaki
(2006).
Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria.
|
| |
J Biosci Bioeng,
102,
118-123.
|
 |
|
|
|
|
 |
Y.Suemori,
M.Nagata,
Y.Nakamura,
K.Nakagawa,
A.Okuda,
J.Inagaki,
K.Shinohara,
M.Ogawa,
K.Iida,
T.Dewa,
K.Yamashita,
A.Gardiner,
R.J.Cogdell,
and
M.Nango
(2006).
Self-assembled monolayer of light-harvesting core complexes of photosynthetic bacteria on an amino-terminated ITO electrode.
|
| |
Photosynth Res,
90,
17-21.
|
 |
|
|
|
|
 |
A.A.Moskalenko,
Z.K.Makhneva,
L.Fiedor,
and
H.Scheer
(2005).
Effects of carotenoid inhibition on the photosynthetic RC-LH1 complex in purple sulphur bacterium Thiorhodospira sibirica.
|
| |
Photosynth Res,
86,
71-80.
|
 |
|
|
|
|
 |
A.Gall,
S.Henry,
S.Takaichi,
B.Robert,
and
R.J.Cogdell
(2005).
Preferential incorporation of coloured-carotenoids occurs in the LH2 complexes from non-sulphur purple bacteria under carotenoid-limiting conditions.
|
| |
Photosynth Res,
86,
25-35.
|
 |
|
|
|
|
 |
A.J.Watson,
A.V.Hughes,
P.K.Fyfe,
M.C.Wakeham,
K.Holden-Dye,
P.Heathcote,
and
M.R.Jones
(2005).
On the role of basic residues in adapting the reaction centre-LH1 complex for growth at elevated temperatures in purple bacteria.
|
| |
Photosynth Res,
86,
81.
|
 |
|
|
|
|
 |
C.N.Hunter,
J.D.Tucker,
and
R.A.Niederman
(2005).
The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides.
|
| |
Photochem Photobiol Sci,
4,
1023-1027.
|
 |
|
|
|
|
 |
C.Tuschak,
M.M.Leung,
J.T.Beatty,
and
J.Overmann
(2005).
The puf operon of the purple sulfur bacterium Amoebobacter purpureus: structure, transcription and phylogenetic analysis.
|
| |
Arch Microbiol,
183,
431-443.
|
 |
|
|
|
|
 |
E.C.Abresch,
H.L.Axelrod,
J.T.Beatty,
J.A.Johnson,
R.Nechushtai,
and
M.L.Paddock
(2005).
Characterization of a highly purified, fully active, crystallizable RC-LH1-PufX core complex from Rhodobacter sphaeroides.
|
| |
Photosynth Res,
86,
61-70.
|
 |
|
|
|
|
 |
G.Katona,
A.Snijder,
P.Gourdon,
U.Andréasson,
O.Hansson,
L.E.Andréasson,
and
R.Neutze
(2005).
Conformational regulation of charge recombination reactions in a photosynthetic bacterial reaction center.
|
| |
Nat Struct Mol Biol,
12,
630-631.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Aklujkar,
R.C.Prince,
and
J.T.Beatty
(2005).
The PuhB protein of Rhodobacter capsulatus functions in photosynthetic reaction center assembly with a secondary effect on light-harvesting complex 1.
|
| |
J Bacteriol,
187,
1334-1343.
|
 |
|
|
|
|
 |
N.Yutin,
and
O.Béjà
(2005).
Putative novel photosynthetic reaction centre organizations in marine aerobic anoxygenic photosynthetic bacteria: insights from metagenomics and environmental genomics.
|
| |
Environ Microbiol,
7,
2027-2033.
|
 |
|
|
|
|
 |
P.K.Fyfe,
A.V.Hughes,
P.Heathcote,
and
M.R.Jones
(2005).
Proteins, chlorophylls and lipids: X-ray analysis of a three-way relationship.
|
| |
Trends Plant Sci,
10,
275-282.
|
 |
|
|
|
|
 |
S.Saijo,
T.Sato,
T.Kumasaka,
N.Tanaka,
K.Harata,
and
T.Odahara
(2005).
Crystallization and preliminary X-ray studies on the reaction center-light-harvesting 1 core complex from Rhodopseudomonas viridis.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
83-86.
|
 |
|
|
|
|
 |
T.S.Balaban,
M.Linke-Schaetzel,
A.D.Bhise,
N.Vanthuyne,
C.Roussel,
C.E.Anson,
G.Buth,
A.Eichhöfer,
K.Foster,
G.Garab,
H.Gliemann,
R.Goddard,
T.Javorfi,
A.K.Powell,
H.Rösner,
and
T.Schimmel
(2005).
Structural characterization of artificial self-assembling porphyrins that mimic the natural chlorosomal bacteriochlorophylls c, d, and e.
|
| |
Chemistry,
11,
2267-2275.
|
 |
|
|
|
|
 |
T.S.Balaban
(2005).
Relevance of the diastereotopic ligation of magnesium atoms of chlorophylls in the major light-harvesting complex II (LHC II) of green plants.
|
| |
Photosynth Res,
86,
251-262.
|
 |
|
|
|
|
 |
X.H.Chen,
L.Zhang,
Y.X.Weng,
L.C.Du,
M.P.Ye,
G.Z.Yang,
R.Fujii,
F.S.Rondonuwu,
Y.Koyama,
Y.S.Wu,
and
J.P.Zhang
(2005).
Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state.
|
| |
Biophys J,
88,
4262-4273.
|
 |
|
|
|
|
 |
Z.K.Makhneva,
O.A.Toropygina,
and
A.A.Moskalenko
(2005).
Formation of bacteriochlorophyll form B820 in light harvesting 2 complexes from purple sulfur bacteria treated with dioxane.
|
| |
Biochemistry (Mosc),
70,
1119-1125.
|
 |
|
|
|
|
 |
C.A.Siebert,
P.Qian,
D.Fotiadis,
A.Engel,
C.N.Hunter,
and
P.A.Bullough
(2004).
Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX.
|
| |
EMBO J,
23,
690-700.
|
 |
|
|
|
|
 |
R.N.Frese,
C.A.Siebert,
R.A.Niederman,
C.N.Hunter,
C.Otto,
and
R.van Grondelle
(2004).
The long-range organization of a native photosynthetic membrane.
|
| |
Proc Natl Acad Sci U S A,
101,
17994-17999.
|
 |
|
|
|
|
 |
S.Bahatyrova,
R.N.Frese,
C.A.Siebert,
J.D.Olsen,
K.O.Van Der Werf,
R.Van Grondelle,
R.A.Niederman,
P.A.Bullough,
C.Otto,
and
C.N.Hunter
(2004).
The native architecture of a photosynthetic membrane.
|
| |
Nature,
430,
1058-1062.
|
 |
|
|
|
|
 |
S.Iwata,
and
J.Barber
(2004).
Structure of photosystem II and molecular architecture of the oxygen-evolving centre.
|
| |
Curr Opin Struct Biol,
14,
447-453.
|
 |
|
|
|
|
 |
S.Scheuring,
J.L.Rigaud,
and
J.N.Sturgis
(2004).
Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum.
|
| |
EMBO J,
23,
4127-4133.
|
 |
|
|
|
|
 |
S.Scheuring,
J.N.Sturgis,
V.Prima,
A.Bernadac,
D.Lévy,
and
J.L.Rigaud
(2004).
Watching the photosynthetic apparatus in native membranes.
|
| |
Proc Natl Acad Sci U S A,
101,
11293-11297.
|
 |
|
|
|
|
 |
W.P.de Ruijter,
S.Oellerich,
J.M.Segura,
A.M.Lawless,
M.Papiz,
and
T.J.Aartsma
(2004).
Observation of the energy-level structure of the low-light adapted B800 LH4 complex by single-molecule spectroscopy.
|
| |
Biophys J,
87,
3413-3420.
|
 |
|
|
|
|
 |
Y.Shimada,
Z.Y.Wang,
Y.Mochizuki,
M.Kobayashi,
and
T.Nozawa
(2004).
Functional expression and characterization of a bacterial light-harvesting membrane protein in Escherichia coli and cell-free synthesis systems.
|
| |
Biosci Biotechnol Biochem,
68,
1942-1948.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
| |