spacer
spacer

PDBsum entry 1pv8

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Lyase PDB id
1pv8

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
276 a.a. *
Ligands
PB1
Metals
_ZN ×2
Waters ×241
* Residue conservation analysis
PDB id:
1pv8
Name: Lyase
Title: Crystal structure of a low activity f12l mutant of human porphobilinogen synthase
Structure: Delta-aminolevulinic acid dehydratase. Chain: a, b. Synonym: porphobilinogen synthase, aladh. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: alad. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Hexamer (from PDB file)
Resolution:
2.20Å     R-factor:   0.199     R-free:   0.284
Authors: S.Breinig,J.Kervinen,L.Stith,A.S.Wasson,R.Fairman,A.Wlodawer, A.Zdanov,E.K.Jaffe
Key ref:
S.Breinig et al. (2003). Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase. Nat Struct Biol, 10, 757-763. PubMed id: 12897770 DOI: 10.1038/nsb963
Date:
26-Jun-03     Release date:   09-Sep-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
P13716  (HEM2_HUMAN) -  Delta-aminolevulinic acid dehydratase from Homo sapiens
Seq:
Struc:
330 a.a.
276 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.4.2.1.24  - porphobilinogen synthase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Porphyrin Biosynthesis (early stages)
      Reaction: 2 5-aminolevulinate = porphobilinogen + 2 H2O + H+
2 × 5-aminolevulinate
=
porphobilinogen
Bound ligand (Het Group name = PB1)
corresponds exactly
+ 2 × H2O
+ H(+)
      Cofactor: Zn(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/nsb963 Nat Struct Biol 10:757-763 (2003)
PubMed id: 12897770  
 
 
Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase.
S.Breinig, J.Kervinen, L.Stith, A.S.Wasson, R.Fairman, A.Wlodawer, A.Zdanov, E.K.Jaffe.
 
  ABSTRACT  
 
Porphobilinogen synthase (PBGS) catalyzes the first common step in the biosynthesis of tetrapyrroles (such as heme and chlorophyll). Although the predominant oligomeric form of this enzyme, as inferred from many crystal structures, is that of a homo-octamer, a rare human PBGS allele, F12L, reveals the presence of a hexameric form. Rearrangement of an N-terminal arm is responsible for this oligomeric switch, which results in profound changes in kinetic behavior. The structural transition between octamer and hexamer must proceed through an unparalleled equilibrium containing two different dimer structures. The allosteric magnesium, present in most PBGS, has a binding site in the octamer but not in the hexamer. The unprecedented structural rearrangement reported here relates to the allosteric regulation of PBGS and suggests that alternative PBGS oligomers may function in a magnesium-dependent regulation of tetrapyrrole biosynthesis in plants and some bacteria.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Characteristics of wild-type human PBGS relative to the F12L variant. (a) The pH-rate profile for human PBGS ( ) exhibits a two-proton activating pK[a] of 5.9 and a one-proton deactivating pK[b] of 8.3. In contrast, the F12L variant ( ) shows a single one-proton activating pK[a] of 8.5. (b) The chromatographic separation of wild-type human (WT) PBGS and the F12L variant on a mono-Q column. (c) The differential mobility of wild-type (WT) human PBGS and the F12L variant on 12.5% (w/v) native PAGE.
Figure 3.
Figure 3. Characteristics of coexpressed WT+F12L. (a) Separation of two peaks of PBGS protein on Q-Sepharose; KCl gradient (red line), A(black line). Both pools showed PBGS activity at pH 7 ( ) and at pH 9 ( ). (b) The mobility of the two pools of WT+F12L relative to wild-type (WT) human PBGS and the F12L variant on native gel electrophoresis. (c) The pH-rate profiles for pool I ( ) and pool II ( ) after further purification on Sephacryl S300. (d) Determination of K[m] and V[max] values for the S300 purified pool I ( ) and pool II ( [280][glyph.gif] ) at pH 7 (black) and pH 9 (red). Dashed lines indicate the poor fits to standard hyperbolic saturation kinetics. Solid lines indicate the superior fit to a double hyperbola model where two forms of the enzyme are catalyzing the same reaction (see text and Table 1).
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2003, 10, 757-763) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20354739 N.Sawada, N.Nagahara, F.Arisaka, K.Mitsuoka, and M.Minami (2011).
Redox and metal-regulated oligomeric state for human porphobilinogen synthase activation.
  Amino Acids, 41, 173-180.  
21439938 Y.Wang, S.Srinivasan, Z.Ye, J.Javier Aguilera, M.M.Lopez, and W.Colón (2011).
Serum amyloid A 2.2 refolds into a octameric oligomer that slowly converts to a more stable hexamer.
  Biochem Biophys Res Commun, 407, 725-729.  
20506125 G.Layer, J.Reichelt, D.Jahn, and D.W.Heinz (2010).
Structure and function of enzymes in heme biosynthesis.
  Protein Sci, 19, 1137-1161.  
19822707 I.U.Heinemann, C.Schulz, W.D.Schubert, D.W.Heinz, Y.G.Wang, Y.Kobayashi, Y.Awa, M.Wachi, D.Jahn, and M.Jahn (2010).
Structure of the heme biosynthetic Pseudomonas aeruginosa porphobilinogen synthase in complex with the antibiotic alaremycin.
  Antimicrob Agents Chemother, 54, 267-272.
PDB code: 2woq
  20865533 U.D.Ramirez, F.Myachina, L.Stith, and E.K.Jaffe (2010).
Docking to large allosteric binding sites on protein surfaces.
  Adv Exp Med Biol, 680, 481-488.  
  19574635 E.Magracheva, S.Kozlov, C.L.Stewart, A.Wlodawer, and A.Zdanov (2009).
Structure of the lamin A/C R482W mutant responsible for dominant familial partial lipodystrophy (FPLD).
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 65, 665-670.
PDB code: 3gef
19812033 S.H.Lawrence, U.D.Ramirez, T.Selwood, L.Stith, and E.K.Jaffe (2009).
Allosteric inhibition of human porphobilinogen synthase.
  J Biol Chem, 284, 35807-35817.  
19225662 S.R.Devenish, and J.A.Gerrard (2009).
The role of quaternary structure in (beta/alpha)(8)-barrel proteins: evolutionary happenstance or a higher level of structure-function relationships?
  Org Biomol Chem, 7, 833-839.  
18795796 B.Kokona, D.J.Rigotti, A.S.Wasson, S.H.Lawrence, E.K.Jaffe, and R.Fairman (2008).
Probing the oligomeric assemblies of pea porphobilinogen synthase by analytical ultracentrifugation.
  Biochemistry, 47, 10649-10656.  
19015748 R.Inoue, and R.Akagi (2008).
Co-synthesis of Human delta-Aminolevulinate Dehydratase (ALAD) Mutants with the Wild-type Enzyme in Cell-free System-Critical Importance of Conformation on Enzyme Activity-.
  J Clin Biochem Nutr, 43, 143-153.  
19578473 S.H.Lawrence, and E.K.Jaffe (2008).
Expanding the Concepts in Protein Structure-Function Relationships and Enzyme Kinetics: Teaching using Morpheeins.
  Biochem Mol Biol Educ, 36, 274-283.  
17236137 E.K.Jaffe, and L.Stith (2007).
ALAD porphyria is a conformational disease.
  Am J Hum Genet, 80, 329-337.  
16377642 L.Tang, S.Breinig, L.Stith, A.Mischel, J.Tannir, B.Kokona, R.Fairman, and E.K.Jaffe (2006).
Single amino acid mutations alter the distribution of human porphobilinogen synthase quaternary structure isoforms (morpheeins).
  J Biol Chem, 281, 6682-6690.  
16023348 E.K.Jaffe (2005).
Morpheeins--a new structural paradigm for allosteric regulation.
  Trends Biochem Sci, 30, 490-497.  
16304458 L.Coates, G.Beaven, P.T.Erskine, S.I.Beale, S.P.Wood, P.M.Shoolingin-Jordan, and J.B.Cooper (2005).
Structure of Chlorobium vibrioforme 5-aminolaevulinic acid dehydratase complexed with a diacid inhibitor.
  Acta Crystallogr D Biol Crystallogr, 61, 1594-1598.
PDB code: 2c1h
15710608 L.Tang, L.Stith, and E.K.Jaffe (2005).
Substrate-induced interconversion of protein quaternary structure isoforms.
  J Biol Chem, 280, 15786-15793.  
15747133 N.Sawada, N.Nagahara, T.Sakai, Y.Nakajima, M.Minami, and T.Kawada (2005).
The activation mechanism of human porphobilinogen synthase by 2-mercaptoethanol: intrasubunit transfer of a reserve zinc ion and coordination with three cysteines in the active center.
  J Biol Inorg Chem, 10, 199-207.  
16131755 P.T.Erskine, L.Coates, R.Newbold, A.A.Brindley, F.Stauffer, G.D.Beaven, R.Gill, A.Coker, S.P.Wood, M.J.Warren, P.M.Shoolingin-Jordan, R.Neier, and J.B.Cooper (2005).
Structure of yeast 5-aminolaevulinic acid dehydratase complexed with the inhibitor 5-hydroxylaevulinic acid.
  Acta Crystallogr D Biol Crystallogr, 61, 1222-1226.
PDB code: 1w31
15555082 D.W.Bollivar, C.Clauson, R.Lighthall, S.Forbes, B.Kokona, R.Fairman, L.Kundrat, and E.K.Jaffe (2004).
Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer.
  BMC Biochem, 5, 17.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer