PDBsum entry 1pn9

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
Protein chains
209 a.a. *
GTX ×2
Waters ×233
* Residue conservation analysis
PDB id:
Name: Transferase
Title: Crystal structure of an insect delta-class glutathione s- transferase from a ddt-resistant strain of the malaria vector anopheles gambiae
Structure: Glutathione s-transferase 1-6. Chain: a, b. Synonym: gst class-delta. Engineered: yes
Source: Anopheles gambiae. African malaria mosquito. Organism_taxid: 7165. Gene: gst1-6. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
2.00Å     R-factor:   0.209     R-free:   0.254
Authors: L.Chen,P.R.Hall,X.E.Zhou,H.Ranson,J.Hemingway,E.J.Meehan
Key ref:
L.Chen et al. (2003). Structure of an insect delta-class glutathione S-transferase from a DDT-resistant strain of the malaria vector Anopheles gambiae. Acta Crystallogr D Biol Crystallogr, 59, 2211-2217. PubMed id: 14646079 DOI: 10.1107/S0907444903018493
12-Jun-03     Release date:   09-Dec-03    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
Q93113  (GST1D_ANOGA) -  Glutathione S-transferase 1, isoform D
209 a.a.
209 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.  - Glutathione transferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RX + glutathione = HX + R-S-glutathione
Bound ligand (Het Group name = GTX)
matches with 76.00% similarity
= HX
+ R-S-glutathione
   Enzyme class 3: E.C.  - DDT-dehydrochlorinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane = 1,1-dichloro-2,2- bis(4-chlorophenyl)ethylene + chloride
= 1,1-dichloro-2,2- bis(4-chlorophenyl)ethylene
+ chloride
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     metabolic process   1 term 
  Biochemical function     transferase activity     4 terms  


DOI no: 10.1107/S0907444903018493 Acta Crystallogr D Biol Crystallogr 59:2211-2217 (2003)
PubMed id: 14646079  
Structure of an insect delta-class glutathione S-transferase from a DDT-resistant strain of the malaria vector Anopheles gambiae.
L.Chen, P.R.Hall, X.E.Zhou, H.Ranson, J.Hemingway, E.J.Meehan.
Glutathione S-transferases (GSTs) are a major family of detoxification enzymes which possess a wide range of substrate specificities. Most organisms possess many GSTs belonging to multiple classes. Interest in GSTs in insects is focused on their role in insecticide resistance; many resistant insects have elevated levels of GST activity. In the malaria vector Anopheles gambiae, elevated GST levels are associated with resistance to the organochlorine insecticide DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane]. This mosquito is the source of an insect GST, agGSTd1-6, which metabolizes DDT and is inhibited by a number of pyrethroid insecticides. The crystal structure of agGSTd1-6 in complex with its inhibitor S-hexyl glutathione has been determined and refined at 2.0 A resolution. The structure adopts a classical GST fold and is similar to those of other insect delta-class GSTs, implying a common conjugation mechanism. A structure-based model for the binding of DDT to agGSTd1-6 reveals two subpockets in the hydrophobic binding site (H-site), each accommodating one planar p-chlorophenyl ring.
  Selected figure(s)  
Figure 4.
Figure 4 Stereoview of the active site showing the interactions between agGSTd1-6 and the inhibitor S-hexylglutathione (labeled GTX). C atoms are colored grey, N atoms blue, O atoms red and S atoms yellow. The bonds in GTX are colored green.
Figure 5.
Figure 5 Model of DDT binding to agGSTd1-6. The GS-DDE conjugate in a putative-binding position in the agGSTd1-6 active site is shown in stereo. C atoms are colored grey, N atoms blue, O atoms red, S atoms yellow and Cl atoms black. The bonds in GS-DDE are colored green. The view is the same as that in Fig. 4-.
  The above figures are reprinted by permission from the IUCr: Acta Crystallogr D Biol Crystallogr (2003, 59, 2211-2217) copyright 2003.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21323601 A.J.Ketterman, C.Saisawang, and J.Wongsantichon (2011).
Insect glutathione transferases.
  Drug Metab Rev, 43, 253-265.  
19493193 M.Sarkar, I.K.Bhattacharyya, A.Borkotoki, D.Goswami, B.Rabha, I.Baruah, and R.B.Srivastava (2009).
Insecticide resistance and detoxifying enzyme activity in the principal bancroftian filariasis vector, Culex quinquefasciatus, in northeastern India.
  Med Vet Entomol, 23, 122-131.  
18245335 L.M.Matzkin (2008).
The molecular basis of host adaptation in cactophilic Drosophila: molecular evolution of a glutathione S-transferase gene (GstD1) in Drosophila mojavensis.
  Genetics, 178, 1073-1083.  
17966126 S.Zheng, H.Deng, T.Ladd, B.L.Tomkins, P.J.Krell, and Q.Feng (2007).
Cloning and characterization of two glutathione S-transferase cDNAs in the spruce budworm, Choristoneura fumiferana.
  Arch Insect Biochem Physiol, 66, 146-157.  
17067049 A.B.Zayed, D.E.Szumlas, H.A.Hanafi, D.J.Fryauff, A.A.Mostafa, K.M.Allam, and W.G.Brogdon (2006).
Use of bioassay and microplate assay to detect and measure insecticide resistance in field populations of Culex pipiens from filariasis endemic areas of Egypt.
  J Am Mosq Control Assoc, 22, 473-482.  
17107489 L.M.Matzkin, T.D.Watts, B.G.Bitler, C.A.Machado, and T.A.Markow (2006).
Functional genomics of cactus host shifts in Drosophila mojavensis.
  Mol Ecol, 15, 4635-4643.  
17162949 N.D.Djadid, H.Barjesteh, A.Raeisi, A.Hassanzahi, and S.Zakeri (2006).
Identification, sequence analysis, and comparative study on GSTe2 insecticide resistance gene in three main world malaria vectors: Anopheles stephensi, Anopheles culicifacies, and Anopheles fluviatilis.
  J Med Entomol, 43, 1171-1177.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.