spacer
spacer

PDBsum entry 1pkn

Go to PDB code: 
protein ligands metals links
Phosphotransferase PDB id
1pkn
Jmol
Contents
Protein chain
514 a.a. *
Ligands
PYR
Metals
__K
_MN
* Residue conservation analysis
PDB id:
1pkn
Name: Phosphotransferase
Title: Structure of rabbit muscle pyruvate kinase complexed with mn2+, k+, and pyruvate
Structure: Pyruvate kinase. Chain: a. Engineered: yes
Source: Oryctolagus cuniculus. Rabbit. Organism_taxid: 9986
Resolution:
2.90Å     R-factor:   0.191    
Authors: T.M.Larsen,L.T.Laughlin,H.M.Holden,I.Rayment,G.H.Reed
Key ref:
T.M.Larsen et al. (1994). Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate. Biochemistry, 33, 6301-6309. PubMed id: 8193145 DOI: 10.1021/bi00186a033
Date:
25-Mar-94     Release date:   26-Jan-95    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P11974  (KPYM_RABIT) -  Pyruvate kinase PKM
Seq:
Struc:
 
Seq:
Struc:
531 a.a.
514 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 6 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.2.7.1.40  - Pyruvate kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + pyruvate = ADP + phosphoenolpyruvate
ATP
+
pyruvate
Bound ligand (Het Group name = PYR)
corresponds exactly
= ADP
+ phosphoenolpyruvate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   2 terms 
  Biological process     metabolic process   3 terms 
  Biochemical function     catalytic activity     10 terms  

 

 
    reference    
 
 
DOI no: 10.1021/bi00186a033 Biochemistry 33:6301-6309 (1994)
PubMed id: 8193145  
 
 
Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate.
T.M.Larsen, L.T.Laughlin, H.M.Holden, I.Rayment, G.H.Reed.
 
  ABSTRACT  
 
The molecular structure of rabbit muscle pyruvate kinase, crystallized as a complex with Mn2+, K+, and pyruvate, has been solved to 2.9-A resolution. Crystals employed in the investigation belonged to the space group P1 and had unit cell dimensions a = 83.6 A, b = 109.9 A, c = 146.8 A, alpha = 94.9 degrees, beta = 93.6 degrees, and gamma = 112.3 degrees. There were two tetramers in the asymmetric unit. The structure was solved by molecular replacement, using as the search model the coordinates of the tetramer of pyruvate kinase from cat muscle [Muirhead, H., Claydon, D. A., Barford, D., Lorimer, C. G., Fothergill-Gilmore, L. A., Schiltz, E., & Schmitt, W. (1986) EMBO J.5, 475-481]. The amino acid sequence derived from the cDNA coding for the enzyme from rabbit muscle was fit to the electron density. The rabbit and cat muscle enzymes have approximately 94% sequence identity, and the folding patterns are expected to be nearly identical. There are, however, three regions where the topological models of the cat and rabbit pyruvate kinases differ. Mn2+ coordinates to the protein through the carboxylate side chains of Glu 271 and Asp 295. These two residues are strictly conserved in all known pyruvate kinases. In addition, the density for Mn2+ is connected to that of pyruvate, consistent with chelation through a carboxylate oxygen and the carbonyl oxygen of the substrate. The epsilon-NH2 of Lys 269 and the OH of Thr 327 lie on either side of the methyl group of bound pyruvate. Spherical electron density, assigned to K+, is located within a well-defined pocket of four oxygen ligands contributed by the carbonyl oxygen of Thr 113, O gamma of Ser 76, O delta 1 of Asn 74, and O delta 2 of Asp 112. The interaction of Asp 112 with the side chains of Lys 269 and Arg 72 may mediate, indirectly, monovalent cation effects on activity.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
  20208146 H.P.Morgan, I.W.McNae, K.Y.Hsin, P.A.Michels, L.A.Fothergill-Gilmore, and M.D.Walkinshaw (2010).
An improved strategy for the crystallization of Leishmania mexicana pyruvate kinase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 215-218.
PDB codes: 3is4 3ktx
20607166 S.J.Ye, and P.B.Armentrout (2010).
Guided ion beam and theoretical studies of sequential bond energies of water to sodium cysteine cation.
  Phys Chem Chem Phys, 12, 13419-13433.  
20441757 S.Kumar, and A.Barth (2010).
Phosphoenolpyruvate and Mg2+ binding to pyruvate kinase monitored by infrared spectroscopy.
  Biophys J, 98, 1931-1940.  
19265196 K.Akhtar, V.Gupta, A.Koul, N.Alam, R.Bhat, and R.N.Bamezai (2009).
Differential behavior of missense mutations in the intersubunit contact domain of the human pyruvate kinase m2 isozyme.
  J Biol Chem, 284, 11971-11981.  
19169653 K.Murakami, R.Tsubouchi, M.Fukayama, S.Qiao, and M.Yoshino (2009).
Iron-dependent oxidative inactivation with affinity cleavage of pyruvate kinase.
  Biol Trace Elem Res, 130, 31-38.  
19719244 P.Herman, and J.C.Lee (2009).
Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 1. Calorimetric study.
  Biochemistry, 48, 9448-9455.  
19719323 P.Herman, and J.C.Lee (2009).
Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 2. Fluorescence study.
  Biochemistry, 48, 9456-9465.  
19085939 R.van Wijk, E.G.Huizinga, A.C.van Wesel, B.A.van Oirschot, M.A.Hadders, and W.W.van Solinge (2009).
Fifteen novel mutations in PKLR associated with pyruvate kinase (PK) deficiency: structural implications of amino acid substitutions in PK.
  Hum Mutat, 30, 446-453.  
18604458 J.C.Lee (2008).
Modulation of allostery of pyruvate kinase by shifting of an ensemble of microstates.
  Acta Biochim Biophys Sin (Shanghai), 40, 663-669.  
18351402 J.Petersen, K.Fisher, and D.J.Lowe (2008).
Structural basis for VO2+ inhibition of nitrogenase activity (A): 31P and 23Na interactions with the metal at the nucleotide binding site of the nitrogenase Fe protein identified by ENDOR spectroscopy.
  J Biol Inorg Chem, 13, 623-635.  
18511452 K.Suzuki, S.Ito, A.Shimizu-Ibuka, and H.Sakai (2008).
Crystal structure of pyruvate kinase from Geobacillus stearothermophilus.
  J Biochem, 144, 305-312.
PDB code: 2e28
18326043 T.Saito, M.Nishi, M.I.Lim, B.Wu, T.Maeda, H.Hashimoto, T.Takeuchi, D.S.Roos, and T.Asai (2008).
A novel GDP-dependent pyruvate kinase isozyme from Toxoplasma gondii localizes to both the apicoplast and the mitochondrion.
  J Biol Chem, 283, 14041-14052.  
17360088 A.Zanella, E.Fermo, P.Bianchi, L.R.Chiarelli, and G.Valentini (2007).
Pyruvate kinase deficiency: the genotype-phenotype association.
  Blood Rev, 21, 217-231.  
18027374 S.S.Kharalkar, G.S.Joshi, F.N.Musayev, M.Fornabaio, D.J.Abraham, and M.K.Safo (2007).
Identification of novel allosteric regulators of human-erythrocyte pyruvate kinase.
  Chem Biodivers, 4, 2603-2617.  
17128977 B.OuYang, S.S.Pochapsky, G.M.Pagani, and T.C.Pochapsky (2006).
Specific effects of potassium ion binding on wild-type and L358P cytochrome P450cam.
  Biochemistry, 45, 14379-14388.  
16905543 J.Oria-Hernández, H.Riveros-Rosas, and L.Ramírez-Sílva (2006).
Dichotomic phylogenetic tree of the pyruvate kinase family: K+ -dependent and -independent enzymes.
  J Biol Chem, 281, 30717-30724.  
15982340 A.Zanella, E.Fermo, P.Bianchi, and G.Valentini (2005).
Red cell pyruvate kinase deficiency: molecular and clinical aspects.
  Br J Haematol, 130, 11-25.  
16147999 J.Oria-Hernández, N.Cabrera, R.Pérez-Montfort, and L.Ramírez-Silva (2005).
Pyruvate kinase revisited: the activating effect of K+.
  J Biol Chem, 280, 37924-37929.  
  16511150 K.Suzuki, S.Ito, A.Shimizu-Ibuka, and H.Sakai (2005).
Crystallization and preliminary X-ray analysis of pyruvate kinase from Bacillus stearothermophilus.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 759-761.  
16307479 S.Desmaret, L.Qian, B.Vanloo, K.Meerschaert, J.Van Damme, J.Grooten, J.Vandekerckhove, G.D.Prestwich, and J.Gettemans (2005).
Lysophosphatidic acid affinity chromatography reveals pyruvate kinase as a specific LPA-binding protein.
  Biol Chem, 386, 1137-1147.  
15152000 A.O.Pineda, C.J.Carrell, L.A.Bush, S.Prasad, S.Caccia, Z.W.Chen, F.S.Mathews, and E.Di Cera (2004).
Molecular dissection of Na+ binding to thrombin.
  J Biol Chem, 279, 31842-31853.
PDB codes: 1sfq 1sg8 1sgi 1shh
15229886 N.Fernandez-Fuentes, A.Hermoso, J.Espadaler, E.Querol, F.X.Aviles, and B.Oliva (2004).
Classification of common functional loops of kinase super-families.
  Proteins, 56, 539-555.  
15296746 R.A.Love, K.A.Maegley, X.Yu, R.A.Ferre, L.K.Lingardo, W.Diehl, H.E.Parge, P.S.Dragovich, and S.A.Fuhrman (2004).
The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy.
  Structure, 12, 1533-1544.
PDB codes: 1te8 1te9 1teb 1xr5 1xr6 1xr7
15189138 V.Tugarinov, P.M.Hwang, and L.E.Kay (2004).
Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins.
  Annu Rev Biochem, 73, 107-146.  
12562754 D.Susan-Resiga, and T.Nowak (2003).
The proton transfer step catalyzed by yeast pyruvate kinase.
  J Biol Chem, 278, 12660-12671.  
14612565 S.Prasad, K.J.Wright, D.Banerjee Roy, L.A.Bush, A.M.Cantwell, and E.Di Cera (2003).
Redesigning the monovalent cation specificity of an enzyme.
  Proc Natl Acad Sci U S A, 100, 13785-13790.  
12486711 T.I.Zarembinski, Y.Kim, K.Peterson, D.Christendat, A.Dharamsi, C.H.Arrowsmith, A.M.Edwards, and A.Joachimiak (2003).
Deep trefoil knot implicated in RNA binding found in an archaebacterial protein.
  Proteins, 50, 177-183.
PDB code: 1k3r
12654928 U.Johnsen, T.Hansen, and P.Schonheit (2003).
Comparative analysis of pyruvate kinases from the hyperthermophilic archaea Archaeoglobus fulgidus, Aeropyrum pernix, and Pyrobaculum aerophilum and the hyperthermophilic bacterium Thermotoga maritima: unusual regulatory properties in hyperthermophilic archaea.
  J Biol Chem, 278, 25417-25427.  
11994161 E.R.Iliffe-Lee, and G.McClarty (2002).
Pyruvate kinase from Chlamydia trachomatis is activated by fructose-2,6-bisphosphate.
  Mol Microbiol, 44, 819-828.  
11960989 G.Valentini, L.R.Chiarelli, R.Fortin, M.Dolzan, A.Galizzi, D.J.Abraham, C.Wang, P.Bianchi, A.Zanella, and A.Mattevi (2002).
Structure and function of human erythrocyte pyruvate kinase. Molecular basis of nonspherocytic hemolytic anemia.
  J Biol Chem, 277, 23807-23814.
PDB codes: 1liu 1liw 1lix 1liy 2vgb 2vgf 2vgg 2vgi
11329261 A.Ahmad, M.S.Akhtar, and V.Bhakuni (2001).
Monovalent cation-induced conformational change in glucose oxidase leading to stabilization of the enzyme.
  Biochemistry, 40, 1945-1955.  
11512153 C.L.Verlinde, V.Hannaert, C.Blonski, M.Willson, J.J.Périé, L.A.Fothergill-Gilmore, F.R.Opperdoes, M.H.Gelb, W.G.Hol, and P.A.Michels (2001).
Glycolysis as a target for the design of new anti-trypanosome drugs.
  Drug Resist Updat, 4, 50-65.  
11389729 L.Ramírez-Silva, S.T.Ferreira, T.Nowak, M.Tuena de Gómez-Puyou, and A.Gómez-Puyou (2001).
Dimethylsulfoxide promotes K+-independent activity of pyruvate kinase and the acquisition of the active catalytic conformation.
  Eur J Biochem, 268, 3267-3274.  
11371194 O.Asojo, J.Friedman, N.Adir, V.Belakhov, Y.Shoham, and T.Baasov (2001).
Crystal structures of KDOP synthase in its binary complexes with the substrate phosphoenolpyruvate and with a mechanism-based inhibitor.
  Biochemistry, 40, 6326-6334.
PDB codes: 1g7u 1g7v
10715009 A.Schramm, B.Siebers, B.Tjaden, H.Brinkmann, and R.Hensel (2000).
Pyruvate kinase of the hyperthermophilic crenarchaeote Thermoproteus tenax: physiological role and phylogenetic aspects.
  J Bacteriol, 182, 2001-2009.  
10715138 B.R.Howard, J.A.Endrizzi, and S.J.Remington (2000).
Crystal structure of Escherichia coli malate synthase G complexed with magnesium and glyoxylate at 2.0 A resolution: mechanistic implications.
  Biochemistry, 39, 3156-3168.
PDB code: 1d8c
11112519 C.J.Bond, M.S.Jurica, A.Mesecar, and B.L.Stoddard (2000).
Determinants of allosteric activation of yeast pyruvate kinase and identification of novel effectors using computational screening.
  Biochemistry, 39, 15333-15343.  
10679990 L.C.Ngoka, and M.L.Gross (2000).
Location of alkali metal binding sites in endothelin A selective receptor antagonists, cyclo(D-Trp-D-Asp-Pro-D-Val-Leu) and cyclo(D-Trp-D-Asp-Pro-D-Ile-Leu), from multistep collisionally activated decompositions.
  J Mass Spectrom, 35, 265-276.  
10841532 S.L.De Wall, E.S.Meadows, L.J.Barbour, and G.W.Gokel (2000).
Synthetic receptors as models for alkali metal cation-pi binding sites in proteins.
  Proc Natl Acad Sci U S A, 97, 6271-6276.  
10679942 W.Kugler, C.Willaschek, C.Holtz, A.Ohlenbusch, P.Laspe, R.Krügener, H.Muirhead, W.Schröter, and M.Lakomek (2000).
Eight novel mutations and consequences on mRNA and protein level in pyruvate kinase-deficient patients with nonspherocytic hemolytic anemia.
  Hum Mutat, 15, 261-272.  
10734049 Y.Ikeda, N.Taniguchi, and T.Noguchi (2000).
Dominant negative role of the glutamic acid residue conserved in the pyruvate kinase M(1) isozyme in the heterotropic allosteric effect involving fructose-1,6-bisphosphate.
  J Biol Chem, 275, 9150-9156.  
10411734 E.R.Iliffe-Lee, and G.McClarty (1999).
Glucose metabolism in Chlamydia trachomatis: the 'energy parasite' hypothesis revisited.
  Mol Microbiol, 33, 177-187.  
10353822 E.Woehl, and M.F.Dunn (1999).
Mechanisms of monovalent cation action in enzyme catalysis: the first stage of the tryptophan synthase beta-reaction.
  Biochemistry, 38, 7118-7130.  
10353823 E.Woehl, and M.F.Dunn (1999).
Mechanisms of monovalent cation action in enzyme catalysis: the tryptophan synthase alpha-, beta-, and alpha beta-reactions.
  Biochemistry, 38, 7131-7141.  
10542061 F.G.De Felice, V.C.Soares, and S.T.Ferreira (1999).
Subunit dissociation and inactivation of pyruvate kinase by hydrostatic pressure oxidation of sulfhydryl groups and ligand effects on enzyme stability.
  Eur J Biochem, 266, 163-169.  
10346916 F.Rusnak, L.Yu, S.Todorovic, and P.Mertz (1999).
Interaction of bacteriophage lambda protein phosphatase with Mn(II): evidence for the formation of a [Mn(II)]2 cluster.
  Biochemistry, 38, 6943-6952.  
10413488 T.J.Bollenbach, A.D.Mesecar, and T.Nowak (1999).
Role of lysine 240 in the mechanism of yeast pyruvate kinase catalysis.
  Biochemistry, 38, 9137-9145.  
9578583 J.P.Loria, and T.Nowak (1998).
Conformational changes in yeast pyruvate kinase studied by 205Tl+ NMR.
  Biochemistry, 37, 6967-6974.  
9482576 L.Pastore, R.Della Morte, G.Frisso, F.Alfinito, D.Vitale, R.M.Calise, F.Ferraro, A.Zagari, B.Rotoli, and F.Salvatore (1998).
Novel mutations and structural implications in R-type pyruvate kinase-deficient patients from Southern Italy.
  Hum Mutat, 11, 127-134.  
9753432 M.McGuire, K.Huang, G.Kapadia, O.Herzberg, and D.Dunaway-Mariano (1998).
Location of the phosphate binding site within Clostridium symbiosum pyruvate phosphate dikinase.
  Biochemistry, 37, 13463-13474.
PDB codes: 1buk 2dik
9519410 M.S.Jurica, A.Mesecar, P.J.Heath, W.Shi, T.Nowak, and B.L.Stoddard (1998).
The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate.
  Structure, 6, 195-210.
PDB codes: 1a3w 1a3x
9485447 R.H.Friesen, A.J.Chin, D.W.Ledman, and J.C.Lee (1998).
Interfacial communications in recombinant rabbit kidney pyruvate kinase.
  Biochemistry, 37, 2949-2960.  
9614077 R.H.Friesen, and J.C.Lee (1998).
The negative dominant effects of T340M mutation on mammalian pyruvate kinase.
  J Biol Chem, 273, 14772-14779.  
9799487 R.H.Friesen, R.J.Castellani, J.C.Lee, and W.Braun (1998).
Allostery in rabbit pyruvate kinase: development of a strategy to elucidate the mechanism.
  Biochemistry, 37, 15266-15276.  
9572839 T.M.Larsen, M.M.Benning, I.Rayment, and G.H.Reed (1998).
Structure of the bis(Mg2+)-ATP-oxalate complex of the rabbit muscle pyruvate kinase at 2.1 A resolution: ATP binding over a barrel.
  Biochemistry, 37, 6247-6255.
PDB codes: 1a49 1a5u
9759501 V.L.Schramm (1998).
Enzymatic transition states and transition state analog design.
  Annu Rev Biochem, 67, 693-720.  
9575171 Y.Ikeda, and T.Noguchi (1998).
Allosteric regulation of pyruvate kinase M2 isozyme involves a cysteine residue in the intersubunit contact.
  J Biol Chem, 273, 12227-12233.  
9184162 A.D.Mesecar, and T.Nowak (1997).
Metal-ion-mediated allosteric triggering of yeast pyruvate kinase. 1. A multidimensional kinetic linked-function analysis.
  Biochemistry, 36, 6792-6802.  
9184163 A.D.Mesecar, and T.Nowak (1997).
Metal-ion-mediated allosteric triggering of yeast pyruvate kinase. 2. A multidimensional thermodynamic linked-function analysis.
  Biochemistry, 36, 6803-6813.  
9241431 C.Chothia, T.Hubbard, S.Brenner, H.Barns, and A.Murzin (1997).
Protein folds in the all-beta and all-alpha classes.
  Annu Rev Biophys Biomol Struct, 26, 597-627.  
9354627 G.R.Bishop, and V.L.Davidson (1997).
Catalytic role of monovalent cations in the mechanism of proton transfer which gates an interprotein electron transfer reaction.
  Biochemistry, 36, 13586-13592.  
9341229 K.M.Kerr, and L.Hedstrom (1997).
The roles of conserved carboxylate residues in IMP dehydrogenase and identification of a transition state analog.
  Biochemistry, 36, 13365-13373.  
  9278152 L.Piubelli, G.Zanetti, and H.R.Bosshard (1997).
Recombinant wild-type and mutant complexes of ferredoxin and ferredoxin:NADP+ reductase studied by isothermal titration calorimetry.
  Biol Chem, 378, 715-718.  
9428713 L.Ramírez-Silva, J.Oria, A.Gómez-Puyou, and M.Tuena de Gómez-Puyou (1997).
The contribution of water to the selectivity of pyruvate kinase for Na+ and K+.
  Eur J Biochem, 250, 583-589.  
  9300484 S.Raychaudhuri, F.Younas, P.A.Karplus, C.H.Faerman, and D.R.Ripoll (1997).
Backbone makes a significant contribution to the electrostatics of alpha/beta-barrel proteins.
  Protein Sci, 6, 1849-1857.  
9252361 Y.Ikeda, T.Tanaka, and T.Noguchi (1997).
Conversion of non-allosteric pyruvate kinase isozyme into an allosteric enzyme by a single amino acid substitution.
  J Biol Chem, 272, 20495-20501.  
8994883 A.Mattevi, M.Rizzi, and M.Bolognesi (1996).
New structures of allosteric proteins revealing remarkable conformational changes.
  Curr Opin Struct Biol, 6, 824-829.  
8688415 E.R.Guinto, and E.Di Cera (1996).
Large heat capacity change in a protein-monovalent cation interaction.
  Biochemistry, 35, 8800-8804.  
8611562 F.Takusagawa, S.Kamitori, and G.D.Markham (1996).
Structure and function of S-adenosylmethionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 28 angstroms resolution.
  Biochemistry, 35, 2586-2596.
PDB codes: 1mxa 1mxb 1mxc
8550549 F.Takusagawa, S.Kamitori, S.Misaki, and G.D.Markham (1996).
Crystal structure of S-adenosylmethionine synthetase.
  J Biol Chem, 271, 136-147.
PDB codes: 1xra 1xrb 1xrc
8650134 H.Rouger, E.Girodon, M.Goossens, F.Galactéros, and M.Cohen-Solal (1996).
PK Mondor: prenatal diagnosis of a frameshift mutation in the LR pyruvate kinase gene associated with severe hereditary non-spherocytic haemolytic anaemia.
  Prenat Diagn, 16, 97.  
8718854 J.Sakon, W.S.Adney, M.E.Himmel, S.R.Thomas, and P.A.Karplus (1996).
Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose.
  Biochemistry, 35, 10648-10660.
PDB code: 1ece
8610096 O.Herzberg, C.C.Chen, G.Kapadia, M.McGuire, L.J.Carroll, S.J.Noh, and D.Dunaway-Mariano (1996).
Swiveling-domain mechanism for enzymatic phosphotransfer between remote reaction sites.
  Proc Natl Acad Sci U S A, 93, 2652-2657.
PDB code: 1dik
  8755908 P.Branny, F.De La Torre, and J.R.Garel (1996).
The genes for phosphofructokinase and pyruvate kinase of Lactobacillus delbrueckii subsp. bulgaricus constitute an operon.
  J Bacteriol, 178, 4727-4730.  
8672457 S.Rhee, K.D.Parris, S.A.Ahmed, E.W.Miles, and D.R.Davies (1996).
Exchange of K+ or Cs+ for Na+ induces local and long-range changes in the three-dimensional structure of the tryptophan synthase alpha2beta2 complex.
  Biochemistry, 35, 4211-4221.
PDB codes: 1ttp 1ttq 1ubs
8591049 A.Mattevi, G.Valentini, M.Rizzi, M.L.Speranza, M.Bolognesi, and A.Coda (1995).
Crystal structure of Escherichia coli pyruvate kinase type I: molecular basis of the allosteric transition.
  Structure, 3, 729-741.
PDB code: 1pky
7673182 E.Di Cera, E.R.Guinto, A.Vindigni, Q.D.Dang, Y.M.Ayala, M.Wuyi, and A.Tulinsky (1995).
The Na+ binding site of thrombin.
  J Biol Chem, 270, 22089-22092.  
7756539 E.Di Cera (1995).
Preferential interactions: it's as simple as 1, 2, 3.
  Biophys J, 68, 727-728.  
  7626232 G.Valentini, P.Iadarola, G.Ferri, and M.L.Speranza (1995).
Affinity labelling of the catalytic and allosteric ATP binding sites on pyruvate kinase type I from Escherichia coli.
  Biol Chem Hoppe Seyler, 376, 231-235.  
8586271 J.Nairn, S.Smith, P.J.Allison, D.Rigden, L.A.Fothergill-Gilmore, and N.C.Price (1995).
Cloning and sequencing of a gene encoding pyruvate kinase from Schizosaccharomyces pombe; implications for quaternary structure and regulation of the enzyme.
  FEMS Microbiol Lett, 134, 221-226.  
7836457 M.C.O'Brien, and D.B.McKay (1995).
How potassium affects the activity of the molecular chaperone Hsc70. I. Potassium is required for optimal ATPase activity.
  J Biol Chem, 270, 2247-2250.  
7629147 M.S.McQueney, and G.D.Markham (1995).
Investigation of monovalent cation activation of S-adenosylmethionine synthetase using mutagenesis and uranyl inhibition.
  J Biol Chem, 270, 18277-18284.  
7836458 S.M.Wilbanks, and D.B.McKay (1995).
How potassium affects the activity of the molecular chaperone Hsc70. II. Potassium binds specifically in the ATPase active site.
  J Biol Chem, 270, 2251-2257.
PDB code: 1hpm
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.