 |
PDBsum entry 1php
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.2.7.2.3
- phosphoglycerate kinase.
|
|
 |
 |
 |
 |
 |

Pathway:
|
 |
Calvin Cycle (carbon fixation stages)
|
 |
 |
 |
 |
 |
Reaction:
|
 |
(2R)-3-phosphoglycerate + ATP = (2R)-3-phospho-glyceroyl phosphate + ADP
|
 |
 |
 |
 |
 |
(2R)-3-phosphoglycerate
|
+
|
ATP
|
=
|
(2R)-3-phospho-glyceroyl phosphate
|
+
|
ADP
Bound ligand (Het Group name = )
corresponds exactly
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Acta Crystallogr D Biol Crystallogr
50:202-209
(1994)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of the ADP complex of the 3-phosphoglycerate kinase from Bacillus stearothermophilus at 1.65 A.
|
|
G.J.Davies,
S.J.Gamblin,
J.A.Littlechild,
Z.Dauter,
K.S.Wilson,
H.C.Watson.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The structure of the ADP complex of the enzyme 3-phosphoglycerate kinase (PGK,
E.C. 2.7.2.3) from Bacillus stearothermophilus NCA-1503 has been determined by
the method of molecular replacement. The structure has been refined to an R
factor of 0.16 for all data between 10.0 and 1.65 A resolution, using data
collected on the Hendrix-Lentfer imaging plate at the EMBL outstation in
Hamburg. The r.m.s. deviations from stereochemical ideality are 0.010 and 0.011
A for bonds and planes, respectively. Although crystallized in the presence of
the nucleotide product MgATP, the high-resolution structure reveals the bound
nucleotide to be MgADP reflecting the low intrinsic ATPase activity of PGK.
Although the two domains of this enzyme are found to be some 4.5 degrees closer
together than is found in the yeast and horse-muscle apo-enzyme structures, this
structure represents the 'open' rather than the 'closed', catalytically
competent form, of the enzyme.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Fig. 1. Ribbon diagram, drawn with the MOLSCRIPTprogram (Kraulis,
1990), howing the structure of B. stearothermophilus PGK. The nu-
cleotide substrate atos are shown in 'ball-and-stck' representatin.
Te 3-PGA site, on the N-terminal domain, as detemined by Harlos,
Vas & Blake (1992) for the pig-muscle enzyme, is indicated.
|
 |
Figure 9.
Fig. 9. Schematic diagram illustratig the main interactions of the
nucleotide substrate, ADP, with the enzyme.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the IUCr:
Acta Crystallogr D Biol Crystallogr
(1994,
50,
202-209)
copyright 1994.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
G.B.Gloor,
G.Tyagi,
D.M.Abrassart,
A.J.Kingston,
A.D.Fernandes,
S.D.Dunn,
and
C.J.Brandl
(2010).
Functionally compensating coevolving positions are neither homoplasic nor conserved in clades.
|
| |
Mol Biol Evol,
27,
1181-1191.
|
 |
|
|
|
|
 |
R.Encalada,
A.Rojo-Domínguez,
J.S.Rodríguez-Zavala,
J.P.Pardo,
H.Quezada,
R.Moreno-Sánchez,
and
E.Saavedra
(2009).
Molecular basis of the unusual catalytic preference for GDP/GTP in Entamoeba histolytica 3-phosphoglycerate kinase.
|
| |
FEBS J,
276,
2037-2047.
|
 |
|
|
|
|
 |
G.M.Sawyer,
A.F.Monzingo,
E.C.Poteet,
D.A.O'Brien,
and
J.D.Robertus
(2008).
X-ray analysis of phosphoglycerate kinase 2, a sperm-specific isoform from Mus musculus.
|
| |
Proteins,
71,
1134-1144.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Balog,
M.Laberge,
and
J.Fidy
(2007).
The influence of interdomain interactions on the intradomain motions in yeast phosphoglycerate kinase: a molecular dynamics study.
|
| |
Biophys J,
92,
1709-1716.
|
 |
|
|
|
|
 |
J.T.Huang,
J.P.Cheng,
and
H.Chen
(2007).
Secondary structure length as a determinant of folding rate of proteins with two- and three-state kinetics.
|
| |
Proteins,
67,
12-17.
|
 |
|
|
|
|
 |
A.Varga,
B.Flachner,
E.Gráczer,
S.Osváth,
A.N.Szilágyi,
and
M.Vas
(2005).
Correlation between conformational stability of the ternary enzyme-substrate complex and domain closure of 3-phosphoglycerate kinase.
|
| |
FEBS J,
272,
1867-1885.
|
 |
|
|
|
|
 |
L.Zecchinon,
A.Oriol,
U.Netzel,
J.Svennberg,
N.Gerardin-Otthiers,
and
G.Feller
(2005).
Stability domains, substrate-induced conformational changes, and hinge-bending motions in a psychrophilic phosphoglycerate kinase. A microcalorimetric study.
|
| |
J Biol Chem,
280,
41307-41314.
|
 |
|
|
|
|
 |
D.L.Jakeman,
A.J.Ivory,
G.M.Blackburn,
and
M.P.Williamson
(2003).
Orientation of 1,3-bisphosphoglycerate analogs bound to phosphoglycerate kinase.
|
| |
J Biol Chem,
278,
10957-10962.
|
 |
|
|
|
|
 |
A.J.Lay,
X.M.Jiang,
E.Daly,
L.Sun,
and
P.J.Hogg
(2002).
Plasmin reduction by phosphoglycerate kinase is a thiol-independent process.
|
| |
J Biol Chem,
277,
9062-9068.
|
 |
|
|
|
|
 |
A.N.Szilágyi,
N.V.Kotova,
G.V.Semisotnov,
and
M.Vas
(2001).
Incomplete refolding of a fragment of the N-terminal domain of pig muscle 3-phosphoglycerate kinase that lacks a subdomain. Comparison with refolding of the complementary C-terminal fragment.
|
| |
Eur J Biochem,
268,
1851-1860.
|
 |
|
|
|
|
 |
M.Bentahir,
G.Feller,
M.Aittaleb,
J.Lamotte-Brasseur,
T.Himri,
J.P.Chessa,
and
C.Gerday
(2000).
Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the antarctic Pseudomonas sp. TACII18.
|
| |
J Biol Chem,
275,
11147-11153.
|
 |
|
|
|
|
 |
J.McHarg,
S.M.Kelly,
N.C.Price,
A.Cooper,
and
J.A.Littlechild
(1999).
Site-directed mutagenesis of proline 204 in the 'hinge' region of yeast phosphoglycerate kinase.
|
| |
Eur J Biochem,
259,
939-945.
|
 |
|
|
|
|
 |
B.E.Bernstein,
P.A.Michels,
H.Kim,
P.H.Petra,
and
W.G.Hol
(1998).
The importance of dynamic light scattering in obtaining multiple crystal forms of Trypanosoma brucei PGK.
|
| |
Protein Sci,
7,
504-507.
|
 |
|
|
|
|
 |
K.M.Pappu,
B.Kunnumal,
and
E.H.Serpersu
(1997).
A new metal-binding site for yeast phosphoglycerate kinase as determined by the use of a metal-ATP analog.
|
| |
Biophys J,
72,
928-935.
|
 |
|
|
|
|
 |
C.A.Smith,
and
I.Rayment
(1996).
Active site comparisons highlight structural similarities between myosin and other P-loop proteins.
|
| |
Biophys J,
70,
1590-1602.
|
 |
|
|
|
|
 |
C.E.Jones,
T.M.Fleming,
D.A.Cowan,
J.A.Littlechild,
and
P.W.Piper
(1995).
The phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus overlap by 8-bp. Isolation, sequencing of the genes and expression in Escherichia coli.
|
| |
Eur J Biochem,
233,
800-808.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |