spacer
spacer

PDBsum entry 1pfk

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transferase(phosphotransferase) PDB id
1pfk
Jmol
Contents
Protein chains
320 a.a. *
Ligands
FBP ×2
ADP ×4
Metals
_MG ×4
Waters ×277
* Residue conservation analysis
PDB id:
1pfk
Name: Transferase(phosphotransferase)
Title: Crystal structure of the complex of phosphofructokinase from escherichia coli with its reaction products
Structure: Phosphofructokinase. Chain: a, b. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Cell_line: 293.
Biol. unit: Tetramer (from PQS)
Resolution:
2.40Å     R-factor:   0.165    
Authors: Y.Shirakihara,P.R.Evans
Key ref: Y.Shirakihara and P.R.Evans (1988). Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol, 204, 973-994. PubMed id: 2975709
Date:
25-Jan-88     Release date:   09-Jan-89    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0A796  (K6PF1_ECOLI) -  ATP-dependent 6-phosphofructokinase isozyme 1
Seq:
Struc:
320 a.a.
320 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.7.1.11  - 6-phosphofructokinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + D-fructose 6-phosphate = ADP + D-fructose 1,6-bisphosphate
ATP
+ D-fructose 6-phosphate
=
ADP
Bound ligand (Het Group name = ADP)
corresponds exactly
+
D-fructose 1,6-bisphosphate
Bound ligand (Het Group name = FBP)
corresponds exactly
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   2 terms 
  Biological process     metabolic process   7 terms 
  Biochemical function     catalytic activity     12 terms  

 

 
    reference    
 
 
J Mol Biol 204:973-994 (1988)
PubMed id: 2975709  
 
 
Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products.
Y.Shirakihara, P.R.Evans.
 
  ABSTRACT  
 
The crystal structure of Escherichia coli phosphofructokinase complexed with its reaction products fructose 1,6-bisphosphate (Fru1,6P) and ADP/Mg2+, and the allosteric activator ADP/Mg2+, has been determined at 2.4 A resolution. The structure was solved by molecular replacement using the known structure of Bacillus stearothermophilus phosphofructokinase, and has been refined to a crystallographic R-factor of 0.165 for all data. The crystallization mixture contained the substrate fructose 6-phosphate, but the electron density maps showed clearly the presence of the product fructose 1,6-bisphosphate, presumably formed by the enzyme reaction with contaminating ATP. The crystal consists of tetrameric molecules with subunits in two different conformations despite their chemical identity. The magnesium ion in the "closed" subunit bridges the phosphate groups of the two products. In the "open" subunit, the products are about 1.5 A further apart, with the Mg2+ bound only to ADP. These two conformations probably represent two successive stages along the reaction pathway, in which the closure of the subunit is required to bring the substrates sufficiently close to react. This conformational change within the subunit is distinct from the quaternary structure change seen previously in the inactive T-state conformation. It is probably not involved in the co-operativity or allosteric control of the enzyme, since the co-operative product fructose 1,6-bisphosphate is not moved, nor are the subunit interfaces changed. The structure of the enzyme is similar to that of B. stearothermophilus phosphofructokinase, and confirms the location of the sites for the two reaction products (or substrates), and of the effector site binding the activator ADP/Mg2+. However, this structure gives a clearer picture of the active site, and of the interactions between the enzyme and its reaction products.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
19905012 A.W.Fenton, and G.D.Reinhart (2009).
Disentangling the web of allosteric communication in a homotetramer: heterotropic inhibition in phosphofructokinase from Escherichia coli.
  Biochemistry, 48, 12323-12328.  
19218242 C.Ferreras, E.D.Hernández, O.H.Martínez-Costa, and J.J.Aragón (2009).
Subunit interactions and composition of the fructose 6-phosphate catalytic site and the fructose 2,6-bisphosphate allosteric site of mammalian phosphofructokinase.
  J Biol Chem, 284, 9124-9131.  
17686780 G.Poncet-Montange, L.Assairi, S.Arold, S.Pochet, and G.Labesse (2007).
NAD kinases use substrate-assisted catalysis for specific recognition of NAD.
  J Biol Chem, 282, 33925-33934.
PDB codes: 2i1w 2i29 2i2a 2i2b 2i2c 2i2d 2i2e 2i2f 2q5f 4dy6
17351295 H.M.Bakali, M.D.Herman, K.A.Johnson, A.A.Kelly, A.Wieslander, B.M.Hallberg, and P.Nordlund (2007).
Crystal structure of YegS, a homologue to the mammalian diacylglycerol kinases, reveals a novel regulatory metal binding site.
  J Biol Chem, 282, 19644-19652.
PDB codes: 2bon 2jgr
17933867 J.K.Hines, X.Chen, J.C.Nix, H.J.Fromm, and R.B.Honzatko (2007).
Structures of mammalian and bacterial fructose-1,6-bisphosphatase reveal the basis for synergism in AMP/fructose 2,6-bisphosphate inhibition.
  J Biol Chem, 282, 36121-36131.
PDB codes: 2qvr 2qvu 2qvv
17522059 K.Tanneberger, J.Kirchberger, J.Bär, W.Schellenberger, S.Rothemund, M.Kamprad, H.Otto, T.Schöneberg, and A.Edelmann (2007).
A novel form of 6-phosphofructokinase. Identification and functional relevance of a third type of subunit in Pichia pastoris.
  J Biol Chem, 282, 23687-23697.  
17597075 M.C.Reddy, S.K.Palaninathan, N.D.Shetty, J.L.Owen, M.D.Watson, and J.C.Sacchettini (2007).
High resolution crystal structures of Mycobacterium tuberculosis adenosine kinase: insights into the mechanism and specificity of this novel prokaryotic enzyme.
  J Biol Chem, 282, 27334-27342.
PDB codes: 2pkf 2pkk 2pkm 2pkn
16373473 J.H.Brown (2006).
Breaking symmetry in protein dimers: designs and functions.
  Protein Sci, 15, 1.  
16760478 P.Bieganowski, H.F.Seidle, M.Wojcik, and C.Brenner (2006).
Synthetic lethal and biochemical analyses of NAD and NADH kinases in Saccharomyces cerevisiae establish separation of cellular functions.
  J Biol Chem, 281, 22439-22445.  
  16946484 R.Cabrera, A.Caniuguir, A.L.Ambrosio, V.Guixé, R.C.Garratt, and J.Babul (2006).
Crystallization and preliminary crystallographic analysis of the tetrameric form of phosphofructokinase-2 from Escherichia coli, a member of the ribokinase family.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 935-937.  
16981693 R.J.Quinlan, and G.D.Reinhart (2006).
Effects of protein-ligand associations on the subunit interactions of phosphofructokinase from B. stearothermophilus.
  Biochemistry, 45, 11333-11341.  
15563467 A.M.Jose, and M.R.Koelle (2005).
Domains, amino acid residues, and new isoforms of Caenorhabditis elegans diacylglycerol kinase 1 (DGK-1) important for terminating diacylglycerol signaling in vivo.
  J Biol Chem, 280, 2730-2736.  
15229886 N.Fernandez-Fuentes, A.Hermoso, J.Espadaler, E.Querol, F.X.Aviles, and B.Oliva (2004).
Classification of common functional loops of kinase super-families.
  Proteins, 56, 539-555.  
15269221 S.Garavaglia, N.Raffaelli, L.Finaurini, G.Magni, and M.Rizzi (2004).
A novel fold revealed by Mycobacterium tuberculosis NAD kinase, a key allosteric enzyme in NADP biosynthesis.
  J Biol Chem, 279, 40980-40986.
PDB codes: 1u0r 1u0t
12829519 A.S.Pham, and G.D.Reinhart (2003).
Quantification of allosteric influence of Escherichia coli phosphofructokinase by frequency domain fluorescence.
  Biophys J, 85, 656-666.  
12595717 J.W.Keillor, C.Lherbet, R.Castonguay, D.Lapierre, J.Martinez-Oyanedel, L.A.Fothergill-Gilmore, and M.D.Walkinshaw (2003).
Expression, purification, crystallization and preliminary crystallographic analysis of Trypanosoma brucei phosphofructokinase.
  Acta Crystallogr D Biol Crystallogr, 59, 532-534.  
12527754 R.Cabrera, H.Fischer, S.Trapani, A.F.Craievich, R.C.Garratt, V.Guixé, and J.Babul (2003).
Domain motions and quaternary packing of phosphofructokinase-2 from Escherichia coli studied by small angle x-ray scattering and homology modeling.
  J Biol Chem, 278, 12913-12919.  
12450869 A.F.Alice, G.Pérez-Martínez, and C.Sánchez-Rivas (2002).
Existence of a true phosphofructokinase in Bacillus sphaericus: cloning and sequencing of the pfk gene.
  Appl Environ Microbiol, 68, 6410-6415.  
12180974 C.López, N.Chevalier, V.Hannaert, D.J.Rigden, P.A.Michels, and J.L.Ramirez (2002).
Leishmania donovani phosphofructokinase. Gene characterization, biochemical properties and structure-modeling studies.
  Eur J Biochem, 269, 3978-3989.  
12069781 G.Labesse, D.Douguet, L.Assairi, and A.M.Gilles (2002).
Diacylglyceride kinases, sphingosine kinases and NAD kinases: distant relatives of 6-phosphofructokinases.
  Trends Biochem Sci, 27, 273-275.  
12453221 H.Nariya, and S.Inouye (2002).
Activation of 6-phosphofructokinase via phosphorylation by Pkn4, a protein Ser/Thr kinase of Myxococcus xanthus.
  Mol Microbiol, 46, 1353-1366.  
12015149 S.A.Moore, R.S.Ronimus, R.S.Roberson, and H.W.Morgan (2002).
The structure of a pyrophosphate-dependent phosphofructokinase from the Lyme disease spirochete Borrelia burgdorferi.
  Structure, 10, 659-671.
PDB code: 1kzh
12162732 S.Claustre, C.Denier, F.Lakhdar-Ghazal, A.Lougare, C.Lopez, N.Chevalier, P.A.Michels, J.Périé, and M.Willson (2002).
Exploring the active site of Trypanosoma brucei phosphofructokinase by inhibition studies: specific irreversible inhibition.
  Biochemistry, 41, 10183-10193.  
12393916 S.M.Pitson, P.A.Moretti, J.R.Zebol, R.Zareie, C.K.Derian, A.L.Darrow, J.Qi, R.J.D'Andrea, C.J.Bagley, M.A.Vadas, and B.W.Wattenberg (2002).
The nucleotide-binding site of human sphingosine kinase 1.
  J Biol Chem, 277, 49545-49553.  
11717283 A.M.Alves, G.J.Euverink, H.Santos, and L.Dijkhuizen (2001).
Different physiological roles of ATP- and PP(i)-dependent phosphofructokinase isoenzymes in the methylotrophic actinomycete Amycolatopsis methanolica.
  J Bacteriol, 183, 7231-7240.  
11512153 C.L.Verlinde, V.Hannaert, C.Blonski, M.Willson, J.J.Périé, L.A.Fothergill-Gilmore, F.R.Opperdoes, M.H.Gelb, W.G.Hol, and P.A.Michels (2001).
Glycolysis as a target for the design of new anti-trypanosome drugs.
  Drug Resist Updat, 4, 50-65.  
11604525 J.L.Johnson, M.D.Lasagna, and G.D.Reinhart (2001).
Influence of a sulfhydryl cross-link across the allosteric-site interface of E. coli phosphofructokinase.
  Protein Sci, 10, 2186-2194.  
11106599 A.Gorokhov, L.Perera, T.A.Darden, M.Negishi, L.C.Pedersen, and L.G.Pedersen (2000).
Heparan sulfate biosynthesis: a theoretical study of the initial sulfation step by N-deacetylase/N-sulfotransferase.
  Biophys J, 79, 2909-2917.  
11114510 H.Erlandsen, E.E.Abola, and R.C.Stevens (2000).
Combining structural genomics and enzymology: completing the picture in metabolic pathways and enzyme active sites.
  Curr Opin Struct Biol, 10, 719-730.  
10450084 S.Hayward (1999).
Structural principles governing domain motions in proteins.
  Proteins, 36, 425-435.  
10194349 X.Wang, and R.G.Kemp (1999).
Identification of residues of Escherichia coli phosphofructokinase that contribute to nucleotide binding and specificity.
  Biochemistry, 38, 4313-4318.  
10587466 Y.Li, D.Rivera, W.Ru, D.Gunasekera, and R.G.Kemp (1999).
Identification of allosteric sites in rabbit phosphofructo-1-kinase.
  Biochemistry, 38, 16407-16412.  
9562560 A.Matte, L.W.Tari, and L.T.Delbaere (1998).
How do kinases transfer phosphoryl groups?
  Structure, 6, 413-419.  
  9555897 B.Siebers, H.P.Klenk, and R.Hensel (1998).
PPi-dependent phosphofructokinase from Thermoproteus tenax, an archaeal descendant of an ancient line in phosphofructokinase evolution.
  J Bacteriol, 180, 2137-2143.  
9761823 G.Obmolova, G.Kopperschläger, J.Heinisch, and W.R.Rypniewski (1998).
Crystallization and preliminary X-ray analysis of the 12S form of phosphofructokinase from Saccharomyces cerevisiae.
  Acta Crystallogr D Biol Crystallogr, 54, 96-98.  
9477947 J.A.Runquist, D.H.Harrison, and H.M.Miziorko (1998).
Functional evaluation of invariant arginines situated in the mobile lid domain of phosphoribulokinase.
  Biochemistry, 37, 1221-1226.  
9519409 J.A.Sigrell, A.D.Cameron, T.A.Jones, and S.L.Mowbray (1998).
Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 A resolution: insights into a new family of kinase structures.
  Structure, 6, 183-193.
PDB code: 1rkd
9843423 M.Ormö, C.E.Bystrom, and S.J.Remington (1998).
Crystal structure of a complex of Escherichia coli glycerol kinase and an allosteric effector fructose 1,6-bisphosphate.
  Biochemistry, 37, 16565-16572.
PDB codes: 1bo5 1bot
9748334 V.Guixé, P.H.Rodríguez, and J.Babul (1998).
Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2-.
  Biochemistry, 37, 13269-13275.  
9675201 V.L.Tlapak-Simmons, and G.D.Reinhart (1998).
Obfuscation of allosteric structure-function relationships by enthalpy-entropy compensation.
  Biophys J, 75, 1010-1015.  
  9055413 A.M.Alves, G.J.Euverink, M.J.Bibb, and L.Dijkhuizen (1997).
Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete Streptomyces coelicolor A3(2).
  Appl Environ Microbiol, 63, 956-961.  
9030771 A.M.Estévez, O.H.Martínez-Costa, V.Sánchez, and J.J.Aragón (1997).
Cloning, sequencing and developmental expression of phosphofructokinase from Dictyostelium discoideum.
  Eur J Biochem, 243, 442-451.  
9188741 A.V.Efimov (1997).
Structural trees for protein superfamilies.
  Proteins, 28, 241-260.  
9013553 B.X.Yan, and Y.Q.Sun (1997).
Glycine residues provide flexibility for enzyme active sites.
  J Biol Chem, 272, 3190-3194.  
9335532 C.R.Bloom, N.C.Kaarsholm, J.Ha, and M.F.Dunn (1997).
Half-site reactivity, negative cooperativity, and positive cooperativity: quantitative considerations of a plausible model.
  Biochemistry, 36, 12759-12765.  
9335531 C.R.Bloom, R.Heymann, N.C.Kaarsholm, and M.F.Dunn (1997).
Binding of 2,6- and 2,7-dihydroxynaphthalene to wild-type and E-B13Q insulins: dynamic, equilibrium, and molecular modeling investigations.
  Biochemistry, 36, 12746-12758.  
9325256 D.Potter, and H.M.Miziorko (1997).
Identification of catalytic residues in human mevalonate kinase.
  J Biol Chem, 272, 25449-25454.  
9335538 J.L.Johnson, and G.D.Reinhart (1997).
Failure of a two-state model to describe the influence of phospho(enol)pyruvate on phosphofructokinase from Escherichia coli.
  Biochemistry, 36, 12814-12822.  
9461292 P.A.Michels, N.Chevalier, F.R.Opperdoes, M.H.Rider, and D.J.Rigden (1997).
The glycosomal ATP-dependent phosphofructokinase of Trypanosoma brucei must have evolved from an ancestral pyrophosphate-dependent enzyme.
  Eur J Biochem, 250, 698-704.  
  8550409 A.M.Alves, W.G.Meijer, J.W.Vrijbloed, and L.Dijkhuizen (1996).
Characterization and phylogeny of the pfp gene of Amycolatopsis methanolica encoding PPi-dependent phosphofructokinase.
  J Bacteriol, 178, 149-155.  
8824275 B.E.Crute, A.F.Lewis, Z.Wu, J.H.Bushweller, and N.A.Speck (1996).
Biochemical and biophysical properties of the core-binding factor alpha2 (AML1) DNA-binding domain.
  J Biol Chem, 271, 26251-26260.  
8805587 C.A.Hasemann, E.S.Istvan, K.Uyeda, and J.Deisenhofer (1996).
The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies.
  Structure, 4, 1017-1029.
PDB code: 1bif
8805593 C.D.Mol, J.M.Harris, E.M.McIntosh, and J.A.Tainer (1996).
Human dUTP pyrophosphatase: uracil recognition by a beta hairpin and active sites formed by three separate subunits.
  Structure, 4, 1077-1092.
PDB codes: 1q5h 1q5u
8672485 S.G.Huang, and M.Klingenberg (1996).
Two-stage nucleotide binding mechanism and its implications to H+ transport inhibition of the uncoupling protein from brown adipose tissue mitochondria.
  Biochemistry, 35, 7846-7854.  
7784428 D.W.Deerfield, D.J.Fox, M.Head-Gordon, R.G.Hiskey, and L.G.Pedersen (1995).
The first solvation shell of magnesium ion in a model protein environment with formate, water, and X-NH3, H2S, imidazole, formaldehyde, and chloride as ligands: an Ab initio study.
  Proteins, 21, 244-255.  
  7549867 I.J.Kurland, and S.J.Pilkis (1995).
Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme.
  Protein Sci, 4, 1023-1037.  
7550225 N.Raben, and J.B.Sherman (1995).
Mutations in muscle phosphofructokinase gene.
  Hum Mutat, 6, 1-6.  
7603525 N.Raben, J.B.Sherman, E.Adams, H.Nakajima, Z.Argov, and P.Plotz (1995).
Various classes of mutations in patients with phosphofructokinase deficiency (Tarui's disease).
  Muscle Nerve, 3, S35-S38.  
7876126 W.M.Byrnes, W.Hu, E.S.Younathan, and S.H.Chang (1995).
A chimeric bacterial phosphofructokinase exhibits cooperativity in the absence of heterotropic regulation.
  J Biol Chem, 270, 3828-3835.  
8078910 C.J.Mau, and C.A.West (1994).
Cloning of casbene synthase cDNA: evidence for conserved structural features among terpenoid cyclases in plants.
  Proc Natl Acad Sci U S A, 91, 8497-8501.  
8060491 H.D.Um, and C.Klein (1994).
Regulatory role of GDP in the phosphoenzyme formation of guanine nucleotide: specific forms of succinyl coenzyme A synthetase.
  J Protein Chem, 13, 177-185.  
8306992 H.W.Huang, and J.A.Cowan (1994).
Metallobiochemistry of the magnesium ion. Characterization of the essential metal-binding site in Escherichia coli ribonuclease H.
  Eur J Biochem, 219, 253-260.  
8202475 I.Auzat, G.Le Bras, and J.R.Garel (1994).
The cooperativity and allosteric inhibition of Escherichia coli phosphofructokinase depend on the interaction between threonine-125 and ATP.
  Proc Natl Acad Sci U S A, 91, 5242-5246.  
7937733 M.B.Berry, B.Meador, T.Bilderback, P.Liang, M.Glaser, and G.N.Phillips (1994).
The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP.
  Proteins, 19, 183-198.
PDB code: 1ank
7815090 P.Kern, R.M.Brunne, and G.Folkers (1994).
Nucleotide-binding properties of adenylate kinase from Escherichia coli: a molecular dynamics study in aqueous and vacuum environments.
  J Comput Aided Mol Des, 8, 367-388.  
8035212 S.D.Rufino, and T.L.Blundell (1994).
Structure-based identification and clustering of protein families and superfamilies.
  J Comput Aided Mol Des, 8, 5.  
8200357 T.W.Traut (1994).
The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites.
  Eur J Biochem, 222, 9.  
  8026214 T.W.Traut (1994).
Dissociation of enzyme oligomers: a mechanism for allosteric regulation.
  Crit Rev Biochem Mol Biol, 29, 125-163.  
  8384554 D.Bossemeyer, R.A.Engh, V.Kinzel, H.Ponstingl, and R.Huber (1993).
Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24).
  EMBO J, 12, 849-859.
PDB code: 1cdk
  8298462 M.B.Swindells (1993).
Classification of doubly wound nucleotide binding topologies using automated loop searches.
  Protein Sci, 2, 2146-2153.  
  8366023 P.Branny, F.De La Torre, and J.R.Garel (1993).
Cloning, sequencing, and expression in Escherichia coli of the gene coding for phosphofructokinase in Lactobacillus bulgaricus.
  J Bacteriol, 175, 5344-5349.  
8369432 S.J.Kim, F.N.Chowdhury, W.Stryjewski, E.S.Younathan, P.S.Russo, and M.D.Barkley (1993).
Time-resolved fluorescence of the single tryptophan of Bacillus stearothermophilus phosphofructokinase.
  Biophys J, 65, 215-226.  
  1304907 I.Auzat, and J.R.Garel (1992).
pH dependence of the reverse reaction catalyzed by phosphofructokinase I from Escherichia coli: implications for the role of Asp 127.
  Protein Sci, 1, 254-258.  
1386803 R.Laine, D.Deville-Bonne, I.Auzat, and J.R.Garel (1992).
Interaction between the carboxyl groups of Asp127 and Asp129 in the active site of Escherichia coli phosphofructokinase.
  Eur J Biochem, 207, 1109-1114.  
1833191 D.Deville-Bonne, and A.J.Else (1991).
Reversible high hydrostatic pressure inactivation of phosphofructokinase from Escherichia coli.
  Eur J Biochem, 200, 747-750.  
1828763 G.Le Bras, D.Deville-Bonne, and J.R.Garel (1991).
Purification and properties of the phosphofructokinase from Lactobacillus bulgaricus. A non-allosteric analog of the enzyme from Escherichia coli.
  Eur J Biochem, 198, 683-687.  
1809835 P.Aulkemeyer, R.Ebner, G.Heilenmann, K.Jahreis, K.Schmid, S.Wrieden, and J.W.Lengeler (1991).
Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria.
  Mol Microbiol, 5, 2913-2922.  
  2050107 P.Glaser, H.Munier, A.M.Gilles, E.Krin, T.Porumb, O.Bârzu, R.Sarfati, C.Pellecuer, and A.Danchin (1991).
Functional consequences of single amino acid substitutions in calmodulin-activated adenylate cyclase of Bordetella pertussis.
  EMBO J, 10, 1683-1688.  
2058912 P.Taylor, S.N.Abramson, D.A.Johnson, C.F.Valenzuela, and J.Herz (1991).
Distinctions in ligand binding sites on the nicotinic acetylcholine receptor.
  Ann N Y Acad Sci, 625, 568-587.  
2165588 D.J.McGeoch (1990).
Protein sequence comparisons show that the 'pseudoproteases' encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family.
  Nucleic Acids Res, 18, 4105-4110.  
  2196171 E.F.Pai, U.Krengel, G.A.Petsko, R.S.Goody, W.Kabsch, and A.Wittinghofer (1990).
Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis.
  EMBO J, 9, 2351-2359.
PDB code: 5p21
2557623 J.F.Bazan, R.J.Fletterick, and S.J.Pilkis (1989).
Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
  Proc Natl Acad Sci U S A, 86, 9642-9646.  
2675171 M.F.Perutz (1989).
Mechanisms of cooperativity and allosteric regulation in proteins.
  Q Rev Biophys, 22, 139-237.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.