spacer
spacer

PDBsum entry 1p8j

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase/hydrolase inhibitor PDB id
1p8j
Jmol
Contents
Protein chains
(+ 2 more) 470 a.a. *
Ligands
DKA-ARG-VAL-LYS-
AR7-0QE
×8
NAG ×6
NAG-NAG-FUL-BMA-
MAN-MAN-NAG-NAG-
NAG-GAL-GAL
SO4 ×70
NAG-NAG-FUC-BMA
Metals
_CA ×16
Waters ×2305
* Residue conservation analysis
PDB id:
1p8j
Name: Hydrolase/hydrolase inhibitor
Title: Crystal structure of the proprotein convertase furin
Structure: Furin precursor. Chain: a, b, c, d, e, f, g, h. Synonym: paired basic amino acid residue cleaving enzyme, p dibasic processing enzyme. Engineered: yes. Decanoyl-arg-val-lys-arg-chloromethylketone inhib chain: j, k, l, m, n, p, q, r. Engineered: yes
Source: Mus musculus. House mouse. Organism_taxid: 10090. Gene: furin or fur or pcsk3. Expressed in: cricetulus griseus. Expression_system_taxid: 10029. Expression_system_organ: ovary cells. Synthetic: yes. Other_details: the peptide (decanoyl-arg-val-lys-arg-
Biol. unit: Octamer (from PQS)
Resolution:
2.60Å     R-factor:   0.188     R-free:   0.219
Authors: S.Henrich,A.Cameron,G.P.Bourenkov,R.Kiefersauer,R.Huber,I.Li W.Bode,M.E.Than
Key ref:
S.Henrich et al. (2003). The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol, 10, 520-526. PubMed id: 12794637 DOI: 10.1038/nsb941
Date:
07-May-03     Release date:   08-Jul-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P23188  (FURIN_MOUSE) -  Furin
Seq:
Struc:
 
Seq:
Struc:
793 a.a.
470 a.a.
Key:    PfamA domain  PfamB domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.4.21.75  - Furin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Release of mature proteins from their proproteins by cleavage of Arg- Xaa-Yaa-Arg-|-Zaa bonds, where Xaa can be any amino acid and Yaa is Arg or Lys. Releases albumin, complement component C3 and von Willebrand factor from their respective precursors.
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     proteolysis   1 term 
  Biochemical function     serine-type endopeptidase activity     1 term  

 

 
DOI no: 10.1038/nsb941 Nat Struct Biol 10:520-526 (2003)
PubMed id: 12794637  
 
 
The crystal structure of the proprotein processing proteinase furin explains its stringent specificity.
S.Henrich, A.Cameron, G.P.Bourenkov, R.Kiefersauer, R.Huber, I.Lindberg, W.Bode, M.E.Than.
 
  ABSTRACT  
 
In eukaryotes, many essential secreted proteins and peptide hormones are excised from larger precursors by members of a class of calcium-dependent endoproteinases, the prohormone-proprotein convertases (PCs). Furin, the best-characterized member of the mammalian PC family, has essential functions in embryogenesis and homeostasis but is also implicated in various pathologies such as tumor metastasis, neurodegeneration and various bacterial and viral diseases caused by such pathogens as anthrax and pathogenic Ebola virus strains. Furin cleaves protein precursors with narrow specificity following basic Arg-Xaa-Lys/Arg-Arg-like motifs. The 2.6 A crystal structure of the decanoyl-Arg-Val-Lys-Arg-chloromethylketone (dec-RVKR-cmk)-inhibited mouse furin ectodomain, the first PC structure, reveals an eight-stranded jelly-roll P domain associated with the catalytic domain. Contoured surface loops shape the active site by cleft, thus explaining furin's stringent requirement for arginine at P1 and P4, and lysine at P2 sites by highly charge-complementary pockets. The structure also explains furin's preference for basic residues at P3, P5 and P6 sites. This structure will aid in the rational design of antiviral and antibacterial drugs.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Overall three-dimensional structure of mouse furin. (a) Stereo ribbon plot of soluble furin. Helices, -strands and irregular structures of the catalytic domain are shown as yellow helices, red arrows and dark blue strands; the P domain is light blue. For clarity, the prefixes (C for catalytic and P for P domain) have been omitted from the secondary structure labels. The active site residues (dark gray) and the dec-RVKR-cmk inhibitor residues (light-colored ball-and-stick model) are given with all nonhydrogen atoms, and the two bound calcium ions as pink spheres. The deep crevice between the catalytic and the P domains (Crev) is of possible importance for propeptide, substrate binding or both. The view is toward the active-site cleft running horizontally across the catalytic domain surface. (b) Alternative orientation to a, showing more clearly the structurally defined N-linked oligosaccharides and the fold of the P domain. Full-length furin is anchored to the membrane by a probably flexible linker extending from the bottom of the P domain.
Figure 4.
Figure 4. Interactions between the inhibitor and the active site cleft. Stereo view toward the active site region of furin and the dec-RVKR-cmk inhibitor (orientation is similar to that in Fig. 1a). (a) Stick model of surrounding residues (dark gray carbons, blue nitrogens and red oxygens), shown together with the inhibitor (gray ball-and-stick model) and calcium 2 (purple sphere). The four inhibitor side chains, the active site residues and the acidic residues giving rise to negative electrostatic potential of subsites S1 -S4 are labeled. (b) The inhibitor (ball-and-stick model) shown in front of the solid surface of the catalytic domain, colored according to its negative (red, -27 e kT-1) and positive (blue, 27 e kT-1) electrostatic surface potential. (c) Stick model similar to a, but with the dec-RVKR-cmk inhibitor superimposed with the final 2F[o] - F[c] electron density map (blue) contoured at 1 .
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2003, 10, 520-526) copyright 2003.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23385464 S.O.Dahms, M.Kuester, C.Streb, C.Roth, N.Sträter, and M.E.Than (2013).
Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement.
  Acta Crystallogr D Biol Crystallogr, 69, 284-297.  
21102426 L.Zhang, Y.Jiang, Y.Zheng, Y.Zeng, Z.Yang, G.Huang, D.Liu, M.Gao, X.Shen, G.Wu, X.Yan, and F.He (2011).
Selective killing of Burkitt's lymphoma cells by mBAFF-targeted delivery of PinX1.
  Leukemia, 25, 331-340.  
20038105 G.L.Becker, F.Sielaff, M.E.Than, I.Lindberg, S.Routhier, R.Day, Y.Lu, W.Garten, and T.Steinmetzer (2010).
Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics.
  J Med Chem, 53, 1067-1075.  
  20151049 S.Tian, and W.Jianhua (2010).
Comparative study of the binding pockets of mammalian proprotein convertases and its implications for the design of specific small molecule inhibitors.
  Int J Biol Sci, 6, 89-95.  
19956642 A.Basak, A.M.Khatib, D.Mohottalage, S.Basak, M.Kolajova, S.S.Bag, and A.Basak (2009).
A novel enediynyl peptide inhibitor of furin that blocks processing of proPDGF-A, B and proVEGF-C.
  PLoS One, 4, e7700.  
19642690 A.Dragulescu-Andrasi, G.Liang, and J.Rao (2009).
In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates.
  Bioconjug Chem, 20, 1660-1666.  
19805099 C.Ottmann, R.Rose, F.Huttenlocher, A.Cedzich, P.Hauske, M.Kaiser, R.Huber, and A.Schaller (2009).
Structural basis for Ca2+-independence and activation by homodimerization of tomato subtilase 3.
  Proc Natl Acad Sci U S A, 106, 17223-17228.
PDB codes: 3i6s 3i74
19654332 H.Kobayashi, H.Utsunomiya, H.Yamanaka, Y.Sei, N.Katunuma, K.Okamoto, and H.Tsuge (2009).
Structural basis for the kexin-like serine protease from Aeromonas sobria as sepsis-causing factor.
  J Biol Chem, 284, 27655-27663.
PDB code: 3hjr
19352504 K.Gawlik, S.A.Shiryaev, W.Zhu, K.Motamedchaboki, R.Desjardins, R.Day, A.G.Remacle, B.Stec, and A.Y.Strongin (2009).
Autocatalytic activation of the furin zymogen requires removal of the emerging enzyme's N-terminus from the active site.
  PLoS ONE, 4, e5031.  
19300906 M.Rholam, and C.Fahy (2009).
Processing of peptide and hormone precursors at the dibasic cleavage sites.
  Cell Mol Life Sci, 66, 2075-2091.  
19332539 T.Komiyama, J.M.Coppola, M.J.Larsen, M.E.van Dort, B.D.Ross, R.Day, A.Rehemtulla, and R.S.Fuller (2009).
Inhibition of furin/proprotein convertase-catalyzed surface and intracellular processing by small molecules.
  J Biol Chem, 284, 15729-15738.  
19089976 T.Rungrotmongkol, P.Decha, P.Sompornpisut, M.Malaisree, P.Intharathep, N.Nunthaboot, T.Udommaneethanakit, O.Aruksakunwong, and S.Hannongbua (2009).
Combined QM/MM mechanistic study of the acylation process in furin complexed with the H5N1 avian influenza virus hemagglutinin's cleavage site.
  Proteins, 76, 62-71.  
18213482 A.N.Tegge, B.R.Southey, J.V.Sweedler, and S.L.Rodriguez-Zas (2008).
Comparative analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle.
  Mamm Genome, 19, 106-120.  
18252740 B.R.Southey, J.V.Sweedler, and S.L.Rodriguez-Zas (2008).
Prediction of neuropeptide cleavage sites in insects.
  Bioinformatics, 24, 815-825.  
18519639 D.Szumska, G.Pieles, R.Essalmani, M.Bilski, D.Mesnard, K.Kaur, A.Franklyn, K.El Omari, J.Jefferis, J.Bentham, J.M.Taylor, J.E.Schneider, S.J.Arnold, P.Johnson, Z.Tymowska-Lalanne, D.Stammers, K.Clarke, S.Neubauer, A.Morris, S.D.Brown, C.Shaw-Smith, A.Cama, V.Capra, J.Ragoussis, D.Constam, N.G.Seidah, A.Prat, and S.Bhattacharya (2008).
VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5.
  Genes Dev, 22, 1465-1477.  
18713856 E.Louagie, N.A.Taylor, D.Flamez, A.J.Roebroek, N.A.Bright, S.Meulemans, R.Quintens, P.L.Herrera, F.Schuit, W.J.Van de Ven, and J.W.Creemers (2008).
Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate.
  Proc Natl Acad Sci U S A, 105, 12319-12324.  
18715923 J.Junjhon, M.Lausumpao, S.Supasa, S.Noisakran, A.Songjaeng, P.Saraithong, K.Chaichoun, U.Utaipat, P.Keelapang, A.Kanjanahaluethai, C.Puttikhunt, W.Kasinrerk, P.Malasit, and N.Sittisombut (2008).
Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction.
  J Virol, 82, 10776-10791.  
18369147 L.Li, S.M.Lok, I.M.Yu, Y.Zhang, R.J.Kuhn, J.Chen, and M.G.Rossmann (2008).
The flavivirus precursor membrane-envelope protein complex: structure and maturation.
  Science, 319, 1830-1834.
PDB codes: 3c5x 3c6d 3c6e
18781827 M.Chrétien, N.G.Seidah, A.Basak, and M.Mbikay (2008).
Proprotein convertases as therapeutic targets.
  Expert Opin Ther Targets, 12, 1289-1300.  
18625069 O.Bader, Y.Krauke, and B.Hube (2008).
Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris.
  BMC Microbiol, 8, 116.  
18375507 P.Decha, T.Rungrotmongkol, P.Intharathep, M.Malaisree, O.Aruksakunwong, C.Laohpongspaisan, V.Parasuk, P.Sompornpisut, S.Pianwanit, S.Kokpol, and S.Hannongbua (2008).
Source of high pathogenicity of an avian influenza virus H5N1: why H5 is better cleaved by furin.
  Biophys J, 95, 128-134.  
18378898 R.Essalmani, A.Zaid, J.Marcinkiewicz, A.Chamberland, A.Pasquato, N.G.Seidah, and A.Prat (2008).
In vivo functions of the proprotein convertase PC5/6 during mouse development: Gdf11 is a likely substrate.
  Proc Natl Acad Sci U S A, 105, 5750-5755.  
18850049 S.Wang, J.Han, Y.Wang, W.Lu, and C.Chi (2008).
Design of peptide inhibitors for furin based on the C-terminal fragment of histone H1.2.
  Acta Biochim Biophys Sin (Shanghai), 40, 848-854.  
18704283 T.Rungrotmongkol, P.Decha, M.Malaisree, P.Sompornpisut, and S.Hannongbua (2008).
Comment on "Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin" [Amino Acids 2008, January 31, Doi: 10.1007/s00726-007-0611-3].
  Amino Acids, 35, 511-512.  
18184105 V.Hook, L.Funkelstein, D.Lu, S.Bark, J.Wegrzyn, and S.R.Hwang (2008).
Proteases for processing proneuropeptides into Peptide neurotransmitters and hormones.
  Annu Rev Pharmacol Toxicol, 48, 393-423.  
18235997 X.L.Guo, L.Li, D.Q.Wei, Y.S.Zhu, and K.C.Chou (2008).
Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin.
  Amino Acids, 35, 375-382.  
17293346 B.Maertens, D.Hopkins, C.W.Franzke, D.R.Keene, L.Bruckner-Tuderman, D.S.Greenspan, and M.Koch (2007).
Cleavage and oligomerization of gliomedin, a transmembrane collagen required for node of ranvier formation.
  J Biol Chem, 282, 10647-10659.  
17435765 D.Cunningham, D.E.Danley, K.F.Geoghegan, M.C.Griffor, J.L.Hawkins, T.A.Subashi, A.H.Varghese, M.J.Ammirati, J.S.Culp, L.R.Hoth, M.N.Mansour, K.M.McGrath, A.P.Seddon, S.Shenolikar, K.J.Stutzman-Engwall, L.C.Warren, D.Xia, and X.Qiu (2007).
Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia.
  Nat Struct Mol Biol, 14, 413-419.
PDB code: 2p4e
17502100 D.E.Piper, S.Jackson, Q.Liu, W.G.Romanow, S.Shetterly, S.T.Thibault, B.Shan, and N.P.Walker (2007).
The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol.
  Structure, 15, 545-552.
PDB code: 2pmw
17804797 E.N.Hampton, M.W.Knuth, J.Li, J.L.Harris, S.A.Lesley, and G.Spraggon (2007).
The self-inhibited structure of full-length PCSK9 at 1.9 A reveals structural homology with resistin within the C-terminal domain.
  Proc Natl Acad Sci U S A, 104, 14604-14609.
PDB code: 2qtw
17426142 J.L.Wheatley, and T.Holyoak (2007).
Differential P1 arginine and lysine recognition in the prototypical proprotein convertase Kex2.
  Proc Natl Acad Sci U S A, 104, 6626-6631.
PDB code: 2id4
17470460 J.Y.Kaimori, Y.Nagasawa, L.F.Menezes, M.A.Garcia-Gonzalez, J.Deng, E.Imai, L.F.Onuchic, L.M.Guay-Woodford, and G.G.Germino (2007).
Polyductin undergoes notch-like processing and regulated release from primary cilia.
  Hum Mol Genet, 16, 942-956.  
17630120 K.Saeki, K.Ozaki, T.Kobayashi, and S.Ito (2007).
Detergent alkaline proteases: enzymatic properties, genes, and crystal structures.
  J Biosci Bioeng, 103, 501-508.  
17477394 S.Bhattacharjya, P.Xu, P.Wang, M.J.Osborne, and F.Ni (2007).
Conformational analyses of a partially-folded bioactive prodomain of human furin.
  Biopolymers, 86, 329-344.  
16790437 A.Pasquato, P.Pullikotil, M.C.Asselin, M.Vacatello, L.Paolillo, F.Ghezzo, F.Basso, C.Di Bello, M.Dettin, and N.G.Seidah (2006).
The proprotein convertase SKI-1/S1P. In vitro analysis of Lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors.
  J Biol Chem, 281, 23471-23481.  
17179036 G.S.Jiao, L.Cregar, J.Wang, S.Z.Millis, C.Tang, S.O'Malley, A.T.Johnson, S.Sareth, J.Larson, and G.Thomas (2006).
Synthetic small molecule furin inhibitors derived from 2,5-dideoxystreptamine.
  Proc Natl Acad Sci U S A, 103, 19707-19712.  
16556608 G.Sidyelyeva, N.E.Baker, and L.D.Fricker (2006).
Characterization of the molecular basis of the Drosophila mutations in carboxypeptidase D. Effect on enzyme activity and expression.
  J Biol Chem, 281, 13844-13852.  
16487335 H.Kobayashi, E.Takahashi, K.Oguma, Y.Fujii, H.Yamanaka, T.Negishi, S.Arimoto-Kobayashi, T.Tsuji, and K.Okamoto (2006).
Cleavage specificity of the serine protease of Aeromonas sobria, a member of the kexin family of subtilases.
  FEMS Microbiol Lett, 256, 165-170.  
16934032 H.Tao, Z.Zhang, J.Shi, X.X.Shao, D.Cui, and C.W.Chi (2006).
Template-assisted rational design of peptide inhibitors of furin using the lysine fragment of the mung bean trypsin inhibitor.
  FEBS J, 273, 3907-3914.  
16956366 J.Han, L.Zhang, X.Shao, J.Shi, and C.Chi (2006).
The potent inhibitory activity of histone H1.2 C-terminal fragments on furin.
  FEBS J, 273, 4459-4469.  
16929099 M.W.Bowler, M.G.Montgomery, A.G.Leslie, and J.E.Walker (2006).
Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F(1)-ATPase by controlled dehydration.
  Acta Crystallogr D Biol Crystallogr, 62, 991-995.  
16407210 N.Rabah, D.Gauthier, B.C.Wilkes, D.J.Gauthier, and C.Lazure (2006).
Single amino acid substitution in the PC1/3 propeptide can induce significant modifications of its inhibitory profile toward its cognate enzyme.
  J Biol Chem, 281, 7556-7567.  
16912035 S.Benjannet, D.Rhainds, J.Hamelin, N.Nassoury, and N.G.Seidah (2006).
The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications.
  J Biol Chem, 281, 30561-30572.  
16601116 S.F.Feliciangeli, L.Thomas, G.K.Scott, E.Subbian, C.H.Hung, S.S.Molloy, F.Jean, U.Shinde, and G.Thomas (2006).
Identification of a pH sensor in the furin propeptide that regulates enzyme activation.
  J Biol Chem, 281, 16108-16116.  
15659365 E.K.Dufour, A.Désilets, J.M.Longpré, and R.Leduc (2005).
Stability of mutant serpin/furin complexes: dependence on pH and regulation at the deacylation step.
  Protein Sci, 14, 303-315.  
15601911 G.Nie, Y.Li, M.Wang, Y.X.Liu, J.K.Findlay, and L.A.Salamonsen (2005).
Inhibiting uterine PC6 blocks embryo implantation: an obligatory role for a proprotein convertase in fertility.
  Biol Reprod, 72, 1029-1036.  
15494419 K.J.Chappell, T.A.Nall, M.J.Stoermer, N.X.Fang, J.D.Tyndall, D.P.Fairlie, and P.R.Young (2005).
Site-directed mutagenesis and kinetic studies of the West Nile Virus NS3 protease identify key enzyme-substrate interactions.
  J Biol Chem, 280, 2896-2903.  
15858259 M.E.Than, S.Henrich, G.P.Bourenkov, H.D.Bartunik, R.Huber, and W.Bode (2005).
The endoproteinase furin contains two essential Ca2+ ions stabilizing its N-terminus and the unique S1 specificity pocket.
  Acta Crystallogr D Biol Crystallogr, 61, 505-512.  
15925704 M.Fugère, and R.Day (2005).
Cutting back on pro-protein convertases: the latest approaches to pharmacological inhibition.
  Trends Pharmacol Sci, 26, 294-301.  
16002408 M.M.Kacprzak, M.E.Than, L.Juliano, M.A.Juliano, W.Bode, and I.Lindberg (2005).
Mutations of the PC2 substrate binding pocket alter enzyme specificity.
  J Biol Chem, 280, 31850-31858.  
16244876 P.Stawowy, and E.Fleck (2005).
Proprotein convertases furin and PC5: targeting atherosclerosis and restenosis at multiple levels.
  J Mol Med, 83, 865-875.  
15356272 C.Degnin, F.Jean, G.Thomas, and J.L.Christian (2004).
Cleavages within the prodomain direct intracellular trafficking and degradation of mature bone morphogenetic protein-4.
  Mol Biol Cell, 15, 5012-5020.  
15044467 D.A.Olsen, S.V.Petersen, T.D.Oury, Z.Valnickova, I.B.Thøgersen, T.Kristensen, R.P.Bowler, J.D.Crapo, and J.J.Enghild (2004).
The intracellular proteolytic processing of extracellular superoxide dismutase (EC-SOD) is a two-step event.
  J Biol Chem, 279, 22152-22157.  
15143067 G.C.Webb, A.Dey, J.Wang, J.Stein, M.Milewski, and D.F.Steiner (2004).
Altered proglucagon processing in an alpha-cell line derived from prohormone convertase 2 null mouse islets.
  J Biol Chem, 279, 31068-31075.  
15526330 L.Falcigno, R.Oliva, G.D'Auria, M.Maletta, M.Dettin, A.Pasquato, C.Di Bello, and L.Paolillo (2004).
Structural investigation of the HIV-1 envelope glycoprotein gp160 cleavage site 3: role of site-specific mutations.
  Chembiochem, 5, 1653-1661.  
15159396 L.Rozan, D.J.Krysan, N.C.Rockwell, and R.S.Fuller (2004).
Plasticity of extended subsites facilitates divergent substrate recognition by Kex2 and furin.
  J Biol Chem, 279, 35656-35663.  
15197180 M.M.Kacprzak, J.R.Peinado, M.E.Than, J.Appel, S.Henrich, G.Lipkind, R.A.Houghten, W.Bode, and I.Lindberg (2004).
Inhibition of furin by polyarginine-containing peptides: nanomolar inhibition by nona-D-arginine.
  J Biol Chem, 279, 36788-36794.  
14688144 M.S.Sarac, J.R.Peinado, S.H.Leppla, and I.Lindberg (2004).
Protection against anthrax toxemia by hexa-D-arginine in vitro and in vivo.
  Infect Immun, 72, 602-605.  
14739277 P.J.Hensbergen, D.Verzijl, C.I.Balog, R.Dijkman, R.C.van der Schors, E.M.van der Raaij-Helmer, M.J.van der Plas, R.Leurs, A.M.Deelder, M.J.Smit, and C.P.Tensen (2004).
Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity.
  J Biol Chem, 279, 13402-13411.  
15140896 P.Podsiadlo, T.Komiyama, R.S.Fuller, and O.Blum (2004).
Furin inhibition by compounds of copper and zinc.
  J Biol Chem, 279, 36219-36227.  
14970232 P.Pullikotil, M.Vincent, S.T.Nichol, and N.G.Seidah (2004).
Development of protein-based inhibitors of the proprotein of convertase SKI-1/S1P: processing of SREBP-2, ATF6, and a viral glycoprotein.
  J Biol Chem, 279, 17338-17347.  
15355968 R.P.Somerville, K.A.Jungers, and S.S.Apte (2004).
Discovery and characterization of a novel, widely expressed metalloprotease, ADAMTS10, and its proteolytic activation.
  J Biol Chem, 279, 51208-51217.  
15358785 S.Benjannet, D.Rhainds, R.Essalmani, J.Mayne, L.Wickham, W.Jin, M.C.Asselin, J.Hamelin, M.Varret, D.Allard, M.Trillard, M.Abifadel, A.Tebon, A.D.Attie, D.J.Rader, C.Boileau, L.Brissette, M.Chrétien, A.Prat, and N.G.Seidah (2004).
NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol.
  J Biol Chem, 279, 48865-48875.  
15342641 T.Nonaka, M.Fujihashi, A.Kita, K.Saeki, S.Ito, K.Horikoshi, and K.Miki (2004).
The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43, with a C-terminal beta-barrel domain.
  J Biol Chem, 279, 47344-47351.
PDB codes: 1wmd 1wme 1wmf
14528262 C.Brenner (2003).
Subtleties among subtilases. The structural biology of Kex2 and furin-related prohormone convertases.
  EMBO Rep, 4, 937-938.  
  14617756 R.S.Jackson, J.W.Creemers, I.S.Farooqi, M.L.Raffin-Sanson, A.Varro, G.J.Dockray, J.J.Holst, P.L.Brubaker, P.Corvol, K.S.Polonsky, D.Ostrega, K.L.Becker, X.Bertagna, J.C.Hutton, A.White, M.T.Dattani, K.Hussain, S.J.Middleton, T.M.Nicole, P.J.Milla, K.J.Lindley, and S.O'Rahilly (2003).
Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency.
  J Clin Invest, 112, 1550-1560.  
14675546 S.D.Patel, C.P.Chen, F.Bahna, B.Honig, and L.Shapiro (2003).
Cadherin-mediated cell-cell adhesion: sticking together as a family.
  Curr Opin Struct Biol, 13, 690-698.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.