spacer
spacer

PDBsum entry 1oxc

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Sugar binding protein PDB id
1oxc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
114 a.a. *
Ligands
FUL ×2
FUC ×4
SO4
Metals
_CA ×8
Waters ×656
* Residue conservation analysis
PDB id:
1oxc
Name: Sugar binding protein
Title: Lecb (pa-lii) in complex with fucose
Structure: Hypothetical protein lecb. Chain: a, b, c, d. Synonym: lecb. Engineered: yes
Source: Pseudomonas aeruginosa. Organism_taxid: 287. Gene: lecb. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Tetramer (from PQS)
Resolution:
1.20Å     R-factor:   0.174     R-free:   0.185
Authors: R.Loris,D.Tielker,K.-E.Jaeger,L.Wyns
Key ref:
R.Loris et al. (2003). Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa. J Mol Biol, 331, 861-870. PubMed id: 12909014 DOI: 10.1016/S0022-2836(03)00754-X
Date:
02-Apr-03     Release date:   09-Sep-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Q9HYN5  (Q9HYN5_PSEAE) -  Fucose-binding lectin PA-IIL from Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)
Seq:
Struc:
115 a.a.
114 a.a.
Key:    Secondary structure  CATH domain

 

 
DOI no: 10.1016/S0022-2836(03)00754-X J Mol Biol 331:861-870 (2003)
PubMed id: 12909014  
 
 
Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa.
R.Loris, D.Tielker, K.E.Jaeger, L.Wyns.
 
  ABSTRACT  
 
The crystal structure of Pseudomonas aeruginosa fucose-specific lectin LecB was determined in its metal-bound and metal-free state as well as in complex with fucose, mannose and fructopyranose. All three monosaccharides bind isosterically via direct interactions with two calcium ions as well as direct hydrogen bonds with several side-chains. The higher affinity for fucose is explained by the details of the binding site around C6 and O1 of fucose. In the mannose and fructose complexes, a carboxylate oxygen atom and one or two hydroxyl groups are partly shielded from solvent upon sugar binding, preventing them from completely fulfilling their hydrogen bonding potential. In the fucose complex, no such defects are observed. Instead, C6 makes favourable interactions with a small hydrophobic patch. Upon demetallization, the C terminus as well as the otherwise rigid metal-binding loop become more mobile and adopt multiple conformations.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Overall structure of LecB. (a) Ribbon representation of the LecB monomer showing one sheet in blue and one in green. The two calcium ions are shown as red spheres. (b) The LecB tetramer with each monomer shown in a different colour. Each monomer is labeled A, B, C or D according to the nomenclature used in the text. (c) Conserved water molecules in the native, calcium-bound LecB structures are shown superimposed on a C^a trace of the LecB tetramer. The view is identical with that in (b). The water molecules that occupy the waste of the tetramer are shown in dark blue. Two completely buried water molecules are shown in red. Orange water molecules are located at the otherwise largely hydrophobic AB interface. Conserved water molecules located close to the monosaccharide binding site are coloured green. The remaining conserved water molecules that are scattered over the surface of the tetramer are coloured in light blue.
Figure 4.
Figure 4. Comparison of the carbohydrate-binding site of LecB (left) and MBP-A (right). Mannose is shown in red, fucose in orange and the calcium ions in green. Residues that contribute to hydrophobic stacking on the sugar rings are shown in blue ball-and-stick.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2003, 331, 861-870) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20305088 E.Karaca, A.S.Melquiond, S.J.de Vries, P.L.Kastritis, and A.M.Bonvin (2010).
Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server.
  Mol Cell Proteomics, 9, 1784-1794.  
20152153 O.Sulák, G.Cioci, M.Delia, M.Lahmann, A.Varrot, A.Imberty, and M.Wimmerová (2010).
A TNF-like trimeric lectin domain from Burkholderia cenocepacia with specificity for fucosylated human histo-blood group antigens.
  Structure, 18, 59-72.
PDB code: 2wq4
19421435 R.J.Pieters (2009).
Maximising multivalency effects in protein-carbohydrate interactions.
  Org Biomol Chem, 7, 2013-2025.  
19101469 E.M.Johansson, S.A.Crusz, E.Kolomiets, L.Buts, R.U.Kadam, M.Cacciarini, K.M.Bartels, S.P.Diggle, M.Cámara, P.Williams, R.Loris, C.Nativi, F.Rosenau, K.E.Jaeger, T.Darbre, and J.L.Reymond (2008).
Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB.
  Chem Biol, 15, 1249-1257.
PDB code: 3dcq
18493664 K.L.Hsu, J.C.Gildersleeve, and L.K.Mahal (2008).
A simple strategy for the creation of a recombinant lectin microarray.
  Mol Biosyst, 4, 654-662.  
18214968 N.K.Mishra, P.Kulhánek, L.Snajdrová, M.Petrek, A.Imberty, and J.Koca (2008).
Molecular dynamics study of Pseudomonas aeruginosa lectin-II complexed with monosaccharides.
  Proteins, 72, 382-392.  
17540045 J.Adam, M.Pokorná, C.Sabin, E.P.Mitchell, A.Imberty, and M.Wimmerová (2007).
Engineering of PA-IIL lectin from Pseudomonas aeruginosa - Unravelling the role of the specificity loop for sugar preference.
  BMC Struct Biol, 7, 36.
PDB codes: 2jdm 2jdn 2jdp 2jdu 2jdy
17623286 K.Marotte, C.Sabin, C.Préville, M.Moumé-Pymbock, M.Wimmerová, E.P.Mitchell, A.Imberty, and R.Roy (2007).
X-ray Structures and Thermodynamics of the Interaction of PA-IIL from Pseudomonas aeruginosa with Disaccharide Derivatives.
  ChemMedChem, 2, 1328-1338.
PDB codes: 2jdh 2jdk
16420359 J.C.Kehr, Y.Zilliges, A.Springer, M.D.Disney, D.D.Ratner, C.Bouchier, P.H.Seeberger, N.T.de Marsac, and E.Dittmann (2006).
A mannan binding lectin is involved in cell-cell attachment in a toxic strain of Microcystis aeruginosa.
  Mol Microbiol, 59, 893-906.  
16800888 R.D.Waite, A.Paccanaro, A.Papakonstantinopoulou, J.M.Hurst, M.Saqi, E.Littler, and M.A.Curtis (2006).
Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles.
  BMC Genomics, 7, 162.  
16140523 A.Imberty, E.P.Mitchell, and M.Wimmerová (2005).
Structural basis of high-affinity glycan recognition by bacterial and fungal lectins.
  Curr Opin Struct Biol, 15, 525-534.  
15573375 E.P.Mitchell, C.Sabin, L.Snajdrová, M.Pokorná, S.Perret, C.Gautier, C.Hofr, N.Gilboa-Garber, J.Koca, M.Wimmerová, and A.Imberty (2005).
High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1.0 A resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches.
  Proteins, 58, 735-746.
PDB code: 1uzv
15659162 J.Bouckaert, J.Berglund, M.Schembri, E.De Genst, L.Cools, M.Wuhrer, C.S.Hung, J.Pinkner, R.Slättegård, A.Zavialov, D.Choudhury, S.Langermann, S.J.Hultgren, L.Wyns, P.Klemm, S.Oscarson, S.D.Knight, and H.De Greve (2005).
Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin.
  Mol Microbiol, 55, 441-455.
PDB codes: 1tr7 1uwf
15858635 M.Ambrosi, N.R.Cameron, and B.G.Davis (2005).
Lectins: tools for the molecular understanding of the glycocode.
  Org Biomol Chem, 3, 1593-1608.  
15101976 D.Sudakevitz, N.Kostlánová, G.Blatman-Jan, E.P.Mitchell, B.Lerrer, M.Wimmerová, D.J.Katcoff, A.Imberty, and N.Gilboa-Garber (2004).
A new Ralstonia solanacearum high-affinity mannose-binding lectin RS-IIL structurally resembling the Pseudomonas aeruginosa fucose-specific lectin PA-IIL.
  Mol Microbiol, 52, 691-700.
PDB codes: 1uqx 2chh
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer