spacer
spacer

PDBsum entry 1ov3

Go to PDB code: 
protein Protein-protein interface(s) links
Oxidoreductase activator PDB id
1ov3
Jmol
Contents
Protein chains
134 a.a. *
127 a.a. *
11 a.a. *
Waters ×207
* Residue conservation analysis
PDB id:
1ov3
Name: Oxidoreductase activator
Title: Structure of the p22phox-p47phox complex
Structure: Neutrophil cytosol factor 1. Chain: a, b. Fragment: residues 156-285. Synonym: ncf-1, neutrophil NADPH oxidase factor 1, 47 kda neutrophil oxidase factor, p47-phox, ncf-47k, 47 kda autosomal chronic granulomatous disease protein. Engineered: yes. Flavocytochrome b558 alpha polypeptide. Chain: c, d.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: ncf1. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Synthetic: yes. Other_details: peptide synthesis
Biol. unit: Tetramer (from PQS)
Resolution:
1.80Å     R-factor:   0.232     R-free:   0.275
Authors: Y.Groemping,K.Lapouge,S.J.Smerdon,K.Rittinger
Key ref:
Y.Groemping et al. (2003). Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell, 113, 343-355. PubMed id: 12732142 DOI: 10.1016/S0092-8674(03)00314-3
Date:
25-Mar-03     Release date:   20-May-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P14598  (NCF1_HUMAN) -  Neutrophil cytosol factor 1
Seq:
Struc:
390 a.a.
134 a.a.*
Protein chain
Pfam   ArchSchema ?
P14598  (NCF1_HUMAN) -  Neutrophil cytosol factor 1
Seq:
Struc:
390 a.a.
127 a.a.*
Protein chains
No UniProt id for this chain
Struc: 11 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 12 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biochemical function     superoxide-generating NADPH oxidase activity     1 term  

 

 
DOI no: 10.1016/S0092-8674(03)00314-3 Cell 113:343-355 (2003)
PubMed id: 12732142  
 
 
Molecular basis of phosphorylation-induced activation of the NADPH oxidase.
Y.Groemping, K.Lapouge, S.J.Smerdon, K.Rittinger.
 
  ABSTRACT  
 
The multi-subunit NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of reactive oxygen species. Activation of the NADPH oxidase requires the targeting of a cytoplasmic p40-p47-p67(phox) complex to the membrane bound heterodimeric p22-gp91(phox) flavocytochrome. This interaction is prevented in the resting state due to an auto-inhibited conformation of p47(phox). The X-ray structure of the auto-inhibited form of p47(phox) reveals that tandem SH3 domains function together to maintain the cytoplasmic complex in an inactive form. Further structural and biochemical data show that phosphorylation of p47(phox) activates a molecular switch that relieves the inhibitory intramolecular interaction. This permits p47(phox) to interact with the cytoplasmic tail of p22(phox) and initiate formation of the active, membrane bound enzyme complex.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Overall Structure of the Auto-Inhibitory Conformation of p47^phox(A) Structure of the auto-inhibited domain swapped dimer of p47^phox (156–340). The two monomers are shown in red and green. The crystal structure of the SH3 domain of Abl (1AB0) has been overlapped onto SH3[A] and is shown in yellow. The lower part of Figure 2A shows an expanded view of this overlap.(B) Overall structure of the biological monomer of auto-inhibited p47^phox. The SH3[A] and SH3[B] domains are colored in blue and red, respectively and the polybasic region in yellow. The secondary structural elements are labeled according to the standard SH3 domain nomenclature. SH3[A] and SH3[B] are related by an approximate 2-fold axis that is perpendicular to the plane of the page.
Figure 3.
Figure 3. P47^phox Constitutes a Novel Mode of SH3 Domain Ligand Interactions(A) Intramolecular interactions between the sequence R[296]GAPPRRSS[304] and the tandem SH3 domains. The molecular surfaces of SH3[A] and SH3[B] are shown in blue-gray and green-gray, respectively. Residues 296–303 are depicted in stick format; Ser304 has been omitted for clarity. SH3-domain residues involved in the intramolecular interaction are indicated by their residue number.(B) Schematic representation of the interactions between the RGAPPRRSS-motif and the tandem SH3 domains. The figure was drawn with LIGPLOT (Wallace et al., 1995). Residues of the polybasic core are shown in blue and residues of the two SH3 domains in orange. Hydrogen bonds are depicted as black lines with the bond distances indicated in Å and hydrophobic interactions are shown as green (SH3-domains) and blue (polybasic peptide) rays.
 
  The above figures are reprinted by permission from Cell Press: Cell (2003, 113, 343-355) copyright 2003.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21629295 G.R.Drummond, S.Selemidis, K.K.Griendling, and C.G.Sobey (2011).
Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets.
  Nat Rev Drug Discov, 10, 453-471.  
20001746 A.Petry, M.Weitnauer, and A.Görlach (2010).
Receptor activation of NADPH oxidases.
  Antioxid Redox Signal, 13, 467-487.  
20637895 D.Shao, A.W.Segal, and L.V.Dekker (2010).
Subcellular localisation of the p40phox component of NADPH oxidase involves direct interactions between the Phox homology domain and F-actin.
  Int J Biochem Cell Biol, 42, 1736-1743.  
20186128 E.E.Nishi, E.B.Oliveira-Sales, C.T.Bergamaschi, T.G.Oliveira, M.A.Boim, and R.R.Campos (2010).
Chronic antioxidant treatment improves arterial renovascular hypertension and oxidative stress markers in the kidney in Wistar rats.
  Am J Hypertens, 23, 473-480.  
  20072711 J.Fan (2010).
TLR Cross-Talk Mechanism of Hemorrhagic Shock-Primed Pulmonary Neutrophil Infiltration.
  Open Crit Care Med J, 2, 1-8.  
20454568 S.Dutta, and K.Rittinger (2010).
Regulation of NOXO1 activity through reversible interactions with p22 and NOXA1.
  PLoS One, 5, e10478.  
20956805 T.Boussetta, M.A.Gougerot-Pocidalo, G.Hayem, S.Ciappelloni, H.Raad, R.Arabi Derkawi, O.Bournier, Y.Kroviarski, X.Z.Zhou, J.S.Malter, P.K.Lu, A.Bartegi, P.M.Dang, and J.El-Benna (2010).
The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils.
  Blood, 116, 5795-5802.  
20411599 Y.Y.Fan, M.Kohno, D.Nakano, H.Ohsaki, H.Kobori, D.Suwarni, N.Ohashi, H.Hitomi, K.Asanuma, T.Noma, Y.Tomino, T.Fujita, and A.Nishiyama (2010).
Cilnidipine suppresses podocyte injury and proteinuria in metabolic syndrome rats: possible involvement of N-type calcium channel in podocyte.
  J Hypertens, 28, 1034-1043.  
19755709 B.Diaz, G.Shani, I.Pass, D.Anderson, M.Quintavalle, and S.A.Courtneidge (2009).
Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation.
  Sci Signal, 2, ra53.  
19229193 E.B.Oliveira-Sales, E.E.Nishi, B.A.Carillo, M.A.Boim, M.S.Dolnikoff, C.T.Bergamaschi, and R.R.Campos (2009).
Oxidative stress in the sympathetic premotor neurons contributes to sympathetic activation in renovascular hypertension.
  Am J Hypertens, 22, 484-492.  
19558209 G.Groeger, C.Quiney, and T.G.Cotter (2009).
Hydrogen peroxide as a cell-survival signaling molecule.
  Antioxid Redox Signal, 11, 2655-2671.  
19358632 G.M.Bokoch, B.Diebold, J.S.Kim, and D.Gianni (2009).
Emerging evidence for the importance of phosphorylation in the regulation of NADPH oxidases.
  Antioxid Redox Signal, 11, 2429-2441.  
19751821 J.A.Leopold, and J.Loscalzo (2009).
Oxidative risk for atherothrombotic cardiovascular disease.
  Free Radic Biol Med, 47, 1673-1706.  
19372727 J.El-Benna, P.M.Dang, M.A.Gougerot-Pocidalo, J.C.Marie, and F.Braut-Boucher (2009).
p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases.
  Exp Mol Med, 41, 217-225.  
19596797 S.S.Stylli, T.T.Stacey, A.M.Verhagen, S.S.Xu, I.Pass, S.A.Courtneidge, and P.Lock (2009).
Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.
  J Cell Sci, 122, 2727-2740.  
19438290 T.L.Leto, S.Morand, D.Hurt, and T.Ueyama (2009).
Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases.
  Antioxid Redox Signal, 11, 2607-2619.  
19129478 X.J.Li, W.Tian, N.D.Stull, S.Grinstein, S.Atkinson, and M.C.Dinauer (2009).
A fluorescently tagged C-terminal fragment of p47phox detects NADPH oxidase dynamics during phagocytosis.
  Mol Biol Cell, 20, 1520-1532.  
18091751 E.B.Oliveira-Sales, A.P.Dugaich, B.A.Carillo, N.P.Abreu, M.A.Boim, P.J.Martins, V.D'Almeida, M.S.Dolnikoff, C.T.Bergamaschi, and R.R.Campos (2008).
Oxidative stress contributes to renovascular hypertension.
  Am J Hypertens, 21, 98.  
18774749 E.M.Lewis, M.Singla, S.Sergeant, P.P.Koty, and L.C.McPhail (2008).
X-linked chronic granulomatous disease secondary to skewed X chromosome inactivation in a female with a novel CYBB mutation and late presentation.
  Clin Immunol, 129, 372-380.  
18513324 H.Sumimoto (2008).
Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species.
  FEBS J, 275, 3249-3277.  
18536919 J.El-Benna, P.M.Dang, and M.A.Gougerot-Pocidalo (2008).
Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane.
  Semin Immunopathol, 30, 279-289.  
18200045 J.Rumpf, B.Simon, N.Jung, T.Maritzen, V.Haucke, M.Sattler, and Y.Groemping (2008).
Structure of the Eps15-stonin2 complex provides a molecular explanation for EH-domain ligand specificity.
  EMBO J, 27, 558-569.
PDB code: 2jxc
18199003 K.Nishi, T.Oda, S.Takabuchi, S.Oda, K.Fukuda, T.Adachi, G.L.Semenza, K.Shingu, and K.Hirota (2008).
LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner.
  Antioxid Redox Signal, 10, 983-995.  
18390927 K.Omori, T.Ohira, Y.Uchida, S.Ayilavarapu, E.L.Batista, M.Yagi, T.Iwata, H.Liu, H.Hasturk, A.Kantarci, and T.E.Van Dyke (2008).
Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase.
  J Leukoc Biol, 84, 292-301.  
18160398 K.Roepstorff, I.Rasmussen, M.Sawada, C.Cudre-Maroux, P.Salmon, G.Bokoch, B.van Deurs, and F.Vilhardt (2008).
Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis.
  J Biol Chem, 283, 7983-7993.  
18672905 K.Shen, S.Sergeant, R.R.Hantgan, L.C.McPhail, and D.A.Horita (2008).
Mutations in the PX-SH3A linker of p47phox decouple PI(3,4)P2 binding from NADPH oxidase activation.
  Biochemistry, 47, 8855-8865.  
  18490750 L.A.Kamen, J.Levinsohn, A.Cadwallader, S.Tridandapani, and J.A.Swanson (2008).
SHIP-1 increases early oxidative burst and regulates phagosome maturation in macrophages.
  J Immunol, 180, 7497-7505.  
18162054 Q.Zhang, S.Chatterjee, Z.Wei, W.D.Liu, and A.B.Fisher (2008).
Rac and PI3 kinase mediate endothelial cell-reactive oxygen species generation during normoxic lung ischemia.
  Antioxid Redox Signal, 10, 679-689.  
18593227 S.Li, S.S.Tabar, V.Malec, B.G.Eul, W.Klepetko, N.Weissmann, F.Grimminger, W.Seeger, F.Rose, and J.Hänze (2008).
NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts.
  Antioxid Redox Signal, 10, 1687-1698.  
18804121 S.Selemidis, C.G.Sobey, K.Wingler, H.H.Schmidt, and G.R.Drummond (2008).
NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition.
  Pharmacol Ther, 120, 254-291.  
18711001 W.Tian, X.J.Li, N.D.Stull, W.Ming, C.I.Suh, S.A.Bissonnette, M.B.Yaffe, S.Grinstein, S.J.Atkinson, and M.C.Dinauer (2008).
Fc{gamma}R-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome.
  Blood, 112, 3867-3877.  
18765662 Z.Shmelzer, M.Karter, M.Eisenstein, T.L.Leto, N.Hadad, D.Ben-Menahem, D.Gitler, S.Banani, B.Wolach, M.Rotem, and R.Levy (2008).
Cytosolic Phospholipase A2{alpha} Is Targeted to the p47phox-PX Domain of the Assembled NADPH Oxidase via a Novel Binding Site in Its C2 Domain.
  J Biol Chem, 283, 31898-31908.  
17521420 J.L.Jiménez, B.Hegemann, J.R.Hutchins, J.M.Peters, and R.Durbin (2007).
A systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database.
  Genome Biol, 8, R90.  
17913709 J.S.Kim, B.A.Diebold, B.M.Babior, U.G.Knaus, and G.M.Bokoch (2007).
Regulation of Nox1 activity via protein kinase A-mediated phosphorylation of NoxA1 and 14-3-3 binding.
  J Biol Chem, 282, 34787-34800.  
17897462 L.M.Olsson, A.K.Lindqvist, H.Källberg, L.Padyukov, H.Burkhardt, L.Alfredsson, L.Klareskog, and R.Holmdahl (2007).
A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity.
  Arthritis Res Ther, 9, R98.  
17289588 P.Sarkar, C.Reichman, T.Saleh, R.B.Birge, and C.G.Kalodimos (2007).
Proline cis-trans isomerization controls autoinhibition of a signaling protein.
  Mol Cell, 25, 413-426.  
17352382 R.Reinehr, B.Görg, S.Becker, N.Qvartskhava, H.J.Bidmon, O.Selbach, H.L.Haas, F.Schliess, and D.Häussinger (2007).
Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices.
  Glia, 55, 758-771.  
17900370 T.Kawahara, and J.D.Lambeth (2007).
Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes.
  BMC Evol Biol, 7, 178.  
17317137 T.Pawson (2007).
Dynamic control of signaling by modular adaptor proteins.
  Curr Opin Cell Biol, 19, 112-116.  
17122360 T.Ueyama, T.Tatsuno, T.Kawasaki, S.Tsujibe, Y.Shirai, H.Sumimoto, T.L.Leto, and N.Saito (2007).
A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phox.
  Mol Biol Cell, 18, 441-454.  
17548354 Y.Berdichevsky, A.Mizrahi, Y.Ugolev, S.Molshanski-Mor, and E.Pick (2007).
Tripartite chimeras comprising functional domains derived from the cytosolic NADPH oxidase components p47phox, p67phox, and Rac1 elicit activator-independent superoxide production by phagocyte membranes: an essential role for anionic membrane phospholipids.
  J Biol Chem, 282, 22122-22139.  
16880255 C.I.Suh, N.D.Stull, X.J.Li, W.Tian, M.O.Price, S.Grinstein, M.B.Yaffe, S.Atkinson, and M.C.Dinauer (2006).
The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcgammaIIA receptor-induced phagocytosis.
  J Exp Med, 203, 1915-1925.  
16845898 K.K.Au-Yeung, J.C.Yip, Y.L.Siow, and K.O (2006).
Folic acid inhibits homocysteine-induced superoxide anion production and nuclear factor kappa B activation in macrophages.
  Can J Physiol Pharmacol, 84, 141-147.  
16326715 K.Ogura, I.Nobuhisa, S.Yuzawa, R.Takeya, S.Torikai, K.Saikawa, H.Sumimoto, and F.Inagaki (2006).
NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox-derived proline-rich peptide.
  J Biol Chem, 281, 3660-3668.
PDB code: 1wlp
16644733 M.R.Schiller, K.Chakrabarti, G.F.King, N.I.Schiller, B.A.Eipper, and M.W.Maciejewski (2006).
Regulation of RhoGEF activity by intramolecular and intermolecular SH3 domain interactions.
  J Biol Chem, 281, 18774-18786.
PDB code: 1u3o
16778989 P.M.Dang, A.Stensballe, T.Boussetta, H.Raad, C.Dewas, Y.Kroviarski, G.Hayem, O.N.Jensen, M.A.Gougerot-Pocidalo, and J.El-Benna (2006).
A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites.
  J Clin Invest, 116, 2033-2043.  
17015440 R.M.Taylor, D.Baniulis, J.B.Burritt, J.M.Gripentrog, C.I.Lord, M.H.Riesselman, W.S.Maaty, B.P.Bothner, T.E.Angel, E.A.Dratz, G.F.Linton, H.L.Malech, and A.J.Jesaitis (2006).
Analysis of human phagocyte flavocytochrome b(558) by mass spectrometry.
  J Biol Chem, 281, 37045-37056.  
16756506 R.P.Bhattacharyya, A.Reményi, B.J.Yeh, and W.A.Lim (2006).
Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits.
  Annu Rev Biochem, 75, 655-680.  
16987008 R.Takeya, and H.Sumimoto (2006).
Regulation of novel superoxide-producing NAD(P)H oxidases.
  Antioxid Redox Signal, 8, 1523-1532.  
16895900 Y.Zhu, C.C.Marchal, A.J.Casbon, N.Stull, K.von Löhneysen, U.G.Knaus, A.J.Jesaitis, S.McCormick, W.M.Nauseef, and M.C.Dinauer (2006).
Deletion mutagenesis of p22phox subunit of flavocytochrome b558: identification of regions critical for gp91phox maturation and NADPH oxidase activity.
  J Biol Chem, 281, 30336-30346.  
15774483 A.K.Chowdhury, T.Watkins, N.L.Parinandi, B.Saatian, M.E.Kleinberg, P.V.Usatyuk, and V.Natarajan (2005).
Src-mediated tyrosine phosphorylation of p47phox in hyperoxia-induced activation of NADPH oxidase and generation of reactive oxygen species in lung endothelial cells.
  J Biol Chem, 280, 20700-20711.  
15657040 C.Massenet, S.Chenavas, C.Cohen-Addad, M.C.Dagher, G.Brandolin, E.Pebay-Peyroula, and F.Fieschi (2005).
Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox. Structural and functional comparison of p40phox and p67phox SH3 domains.
  J Biol Chem, 280, 13752-13761.
PDB codes: 1w6x 1w70
16228008 D.Jozic, N.Cárdenes, Y.L.Deribe, G.Moncalián, D.Hoeller, Y.Groemping, I.Dikic, K.Rittinger, and J.Bravo (2005).
Cbl promotes clustering of endocytic adaptor proteins.
  Nat Struct Mol Biol, 12, 972-979.
PDB codes: 2ak5 2bz8
15743827 J.M.Li, L.M.Fan, M.R.Christie, and A.M.Shah (2005).
Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4.
  Mol Cell Biol, 25, 2320-2330.  
16099876 K.D.Martyn, M.J.Kim, M.T.Quinn, M.C.Dinauer, and U.G.Knaus (2005).
p21-activated kinase (Pak) regulates NADPH oxidase activation in human neutrophils.
  Blood, 106, 3962-3969.  
16081595 M.Karima, A.Kantarci, T.Ohira, H.Hasturk, V.L.Jones, B.H.Nam, A.Malabanan, P.C.Trackman, J.A.Badwey, and T.E.Van Dyke (2005).
Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients: association with periodontitis.
  J Leukoc Biol, 78, 862-870.  
15860042 M.Soccio, E.Toniato, V.Evangelista, M.Carluccio, and R.De Caterina (2005).
Oxidative stress and cardiovascular risk: the role of vascular NAD(P)H oxidase and its genetic variants.
  Eur J Clin Invest, 35, 305-314.  
15618159 S.Nishida, L.S.Yoshida, T.Shimoyama, H.Nunoi, T.Kobayashi, and S.Tsunawaki (2005).
Fungal metabolite gliotoxin targets flavocytochrome b558 in the activation of the human neutrophil NADPH oxidase.
  Infect Immun, 73, 235-244.  
15994299 T.Kawahara, D.Ritsick, G.Cheng, and J.D.Lambeth (2005).
Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation.
  J Biol Chem, 280, 31859-31869.  
16327167 T.Nakashima, T.Tamura, M.Kurachi, K.Yamaguchi, and T.Oda (2005).
Apoptosis-mediated cytotoxicity of prodigiosin-like red pigment produced by gamma-Proteobacterium and its multiple bioactivities.
  Biol Pharm Bull, 28, 2289-2295.  
  15238208 A.R.Cross, and A.W.Segal (2004).
The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems.
  Biochim Biophys Acta, 1657, 1.  
14734109 B.M.Babior (2004).
NADPH oxidase.
  Curr Opin Immunol, 16, 42-47.  
15483625 C.Kojima, A.Hashimoto, I.Yabuta, M.Hirose, S.Hashimoto, Y.Kanaho, H.Sumimoto, T.Ikegami, and H.Sabe (2004).
Regulation of Bin1 SH3 domain binding by phosphoinositides.
  EMBO J, 23, 4413-4422.  
15181005 G.Cheng, D.Ritsick, and J.D.Lambeth (2004).
Nox3 regulation by NOXO1, p47phox, and p67phox.
  J Biol Chem, 279, 34250-34255.  
14617635 G.Cheng, and J.D.Lambeth (2004).
NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain.
  J Biol Chem, 279, 4737-4742.  
15039755 J.D.Lambeth (2004).
NOX enzymes and the biology of reactive oxygen.
  Nat Rev Immunol, 4, 181-189.  
15365846 J.M.Robinson, T.Ohira, and J.A.Badwey (2004).
Regulation of the NADPH-oxidase complex of phagocytic leukocytes. Recent insights from structural biology, molecular genetics, and microscopy.
  Histochem Cell Biol, 122, 293-304.  
15280876 M.A.Lemmon, and S.J.Smerdon (2004).
Signaling by the sea.
  Nat Struct Mol Biol, 11, 682-685.  
15123602 S.Yuzawa, K.Ogura, M.Horiuchi, N.N.Suzuki, Y.Fujioka, M.Kataoka, H.Sumimoto, and F.Inagaki (2004).
Solution structure of the tandem Src homology 3 domains of p47phox in an autoinhibited form.
  J Biol Chem, 279, 29752-29760.  
15147273 S.Yuzawa, N.N.Suzuki, Y.Fujioka, K.Ogura, H.Sumimoto, and F.Inagaki (2004).
A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase.
  Genes Cells, 9, 443-456.
PDB code: 1uec
15192089 T.C.Meng, D.A.Buckley, S.Galic, T.Tiganis, and N.K.Tonks (2004).
Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B.
  J Biol Chem, 279, 37716-37725.  
15070760 W.C.Chou, C.Jie, A.A.Kenedy, R.J.Jones, M.A.Trush, and C.V.Dang (2004).
Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells.
  Proc Natl Acad Sci U S A, 101, 4578-4583.  
15293055 W.M.Nauseef (2004).
Assembly of the phagocyte NADPH oxidase.
  Histochem Cell Biol, 122, 277-291.  
13678962 G.M.Bokoch, and U.G.Knaus (2003).
NADPH oxidases: not just for leukocytes anymore!
  Trends Biochem Sci, 28, 502-508.  
12967772 H.Cai, K.K.Griendling, and D.G.Harrison (2003).
The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases.
  Trends Pharmacol Sci, 24, 471-478.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.