 |
PDBsum entry 1oqw
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Cell adhesion
|
PDB id
|
|
|
|
1oqw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
11:1139-1150
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin.
|
|
L.Craig,
R.K.Taylor,
M.E.Pique,
B.D.Adair,
A.S.Arvai,
M.Singh,
S.J.Lloyd,
D.S.Shin,
E.D.Getzoff,
M.Yeager,
K.T.Forest,
J.A.Tainer.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Pilin assembly into type IV pili is required for virulence by bacterial
pathogens that cause diseases such as cholera, pneumonia, gonorrhea, and
meningitis. Crystal structures of soluble, N-terminally truncated pilin from
Vibrio cholera toxin-coregulated pilus (TCP) and full-length PAK pilin from
Pseudomonas aeruginosa reveal a novel TCP fold, yet a shared architecture for
the type IV pilins. In each pilin subunit a conserved, extended, N-terminal
alpha helix wrapped by beta strands anchors the structurally variable globular
head. Inside the assembled pilus, characterized by cryo-electron microscopy and
crystallography, the extended hydrophobic alpha helices make multisubunit
contacts to provide mechanical strength and flexibility. Outside, distinct
interactions of adaptable heads contribute surface variation for specificity of
pilus function in antigenicity, motility, adhesion, and colony formation.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4. TcpA Crystal Lattice and Structure-Based Model of
TCP Filament(A) Crystal lattice showing TcpA subunits arranged
in hexagonally packed fibers. The three molecules in the
asymmetric unit are colored red and appear at different
levels.(B) A single crystallographic fiber showing that the
N-terminal α helices face the center of the fiber and have the
same polarity. The three strands of the helical fiber are
colored red, blue, and yellow. Two subunits are shown for each
start, with the second one rotated 60° counterclockwise
relative to the first and translated 17.85 Å along the
fiber axis (i.e., into the page).(C) Side view of a single
crystallographic fiber showing the left-handed three-start
helix, fiber dimensions, and helical symmetry. Six subunits are
shown in one complete turn for each helical strand of the
three-start helix assembly.(D) Hydrophobic interface connecting
subunits within each strand of the left-handed three-start
helices. Side chains on α2 of one subunit are shown as yellow
ball-and-stick representations on an orange ribbon, and side
chains on α3 and α4 are shown in cyan on a green ribbon.
Relevant oxygen atoms are colored red, and nitrogens are blue.
In addition to the hydrophobic interactions, two hydrogen bonds
link the subunits (Tyr51:OH to Leu176:O, and Thr125:OH to
Leu76:O) as indicated by white spheres. The disulfide-bound
cysteines are colored pink with yellow sulfur atoms.(E and F)
Top view (E) and side view (F) of the structure-based TCP model
derived from the symmetry determined by EM analysis and the
packing arrangement seen in the crystallographic fibers. An
extended α-helical tail has been added to the N terminus using
the coordinates of the PAK pilin α1-N. The dimensions are shown
for comparison with the crystallographic fiber in (C).
|
 |
Figure 5.
Figure 5. Results of Mutational and Epitope Mapping Studies
Are Consistent with the Three-Start Helix TCP Model(A) Top view
of TcpA showing the location of structural (yellow) and
functional (blue) residues. Pro69 (green) has both structural
and functional properties.(B) Surface representation of a
section of the TCP model showing that overlapping protective
epitopes (Sun et al., 1997), colored off-white, map to a large
surface-exposed patch on the TcpA subunit.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2003,
11,
1139-1150)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
B.A.Jude,
and
R.K.Taylor
(2011).
The physical basis of type 4 pilus-mediated microcolony formation by Vibrio cholerae O1.
|
| |
J Struct Biol,
175,
1-9.
|
 |
|
|
|
|
 |
G.J.Williams,
R.S.Williams,
J.S.Williams,
G.Moncalian,
A.S.Arvai,
O.Limbo,
G.Guenther,
S.Sildas,
M.Hammel,
P.Russell,
and
J.A.Tainer
(2011).
ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair.
|
| |
Nat Struct Mol Biol,
18,
423-431.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Hackbarth,
and
R.S.Hodges
(2010).
Synthetic peptide vaccine development: designing dual epitopes into a single pilin peptide immunogen generates antibody cross-reactivity between two strains of Pseudomonas aeruginosa.
|
| |
Chem Biol Drug Des,
76,
293-304.
|
 |
|
|
|
|
 |
K.K.Mahmoud,
and
S.F.Koval
(2010).
Characterization of type IV pili in the life cycle of the predator bacterium Bdellovibrio.
|
| |
Microbiology,
156,
1040-1051.
|
 |
|
|
|
|
 |
M.Campos,
M.Nilges,
D.A.Cisneros,
and
O.Francetic
(2010).
Detailed structural and assembly model of the type II secretion pilus from sparse data.
|
| |
Proc Natl Acad Sci U S A,
107,
13081-13086.
|
 |
|
|
|
|
 |
M.S.Lim,
D.Ng,
Z.Zong,
A.S.Arvai,
R.K.Taylor,
J.A.Tainer,
and
L.Craig
(2010).
Vibrio cholerae El Tor TcpA crystal structure and mechanism for pilus-mediated microcolony formation.
|
| |
Mol Microbiol,
77,
755-770.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.W.Heiniger,
H.C.Winther-Larsen,
R.J.Pickles,
M.Koomey,
and
M.C.Wolfgang
(2010).
Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin.
|
| |
Cell Microbiol,
12,
1158-1173.
|
 |
|
|
|
|
 |
A.M.Balakrishna,
A.M.Saxena,
H.Y.Mok,
and
K.Swaminathan
(2009).
Structural basis of typhoid: Salmonella typhi type IVb pilin (PilS) and cystic fibrosis transmembrane conductance regulator interaction.
|
| |
Proteins,
77,
253-261.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Harvey,
M.Habash,
F.Aidoo,
and
L.L.Burrows
(2009).
Single-residue changes in the C-terminal disulfide-bonded loop of the Pseudomonas aeruginosa type IV pilin influence pilus assembly and twitching motility.
|
| |
J Bacteriol,
191,
6513-6524.
|
 |
|
|
|
|
 |
S.Yang,
and
P.E.Bourne
(2009).
The evolutionary history of protein domains viewed by species phylogeny.
|
| |
PLoS One,
4,
e8378.
|
 |
|
|
|
|
 |
E.Shimoda,
T.Muto,
T.Horiuchi,
N.Furuya,
and
T.Komano
(2008).
Novel class of mutations of pilS mutants, encoding plasmid R64 type IV prepilin: interface of PilS-PilV interactions.
|
| |
J Bacteriol,
190,
1202-1208.
|
 |
|
|
|
|
 |
J.Li,
M.S.Lim,
S.Li,
M.Brock,
M.E.Pique,
V.L.Woods,
and
L.Craig
(2008).
Vibrio cholerae toxin-coregulated pilus structure analyzed by hydrogen/deuterium exchange mass spectrometry.
|
| |
Structure,
16,
137-148.
|
 |
|
|
|
|
 |
J.V.Kus,
J.Kelly,
L.Tessier,
H.Harvey,
D.G.Cvitkovitch,
and
L.L.Burrows
(2008).
Modification of Pseudomonas aeruginosa Pa5196 type IV Pilins at multiple sites with D-Araf by a novel GT-C family Arabinosyltransferase, TfpW.
|
| |
J Bacteriol,
190,
7464-7478.
|
 |
|
|
|
|
 |
L.Craig,
and
J.Li
(2008).
Type IV pili: paradoxes in form and function.
|
| |
Curr Opin Struct Biol,
18,
267-277.
|
 |
|
|
|
|
 |
L.L.Burrows
(2008).
A nice return on the "stalk" exchange.
|
| |
Structure,
16,
19-20.
|
 |
|
|
|
|
 |
M.E.Yanez,
K.V.Korotkov,
J.Abendroth,
and
W.G.Hol
(2008).
The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus.
|
| |
J Mol Biol,
375,
471-486.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.E.Yanez,
K.V.Korotkov,
J.Abendroth,
and
W.G.Hol
(2008).
Structure of the minor pseudopilin EpsH from the Type 2 secretion system of Vibrio cholerae.
|
| |
J Mol Biol,
377,
91.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.L.Asikyan,
J.V.Kus,
and
L.L.Burrows
(2008).
Novel proteins that modulate type IV pilus retraction dynamics in Pseudomonas aeruginosa.
|
| |
J Bacteriol,
190,
7022-7034.
|
 |
|
|
|
|
 |
R.Fronzes,
H.Remaut,
and
G.Waksman
(2008).
Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria.
|
| |
EMBO J,
27,
2271-2280.
|
 |
|
|
|
|
 |
A.Mandlik,
A.Swierczynski,
A.Das,
and
H.Ton-That
(2007).
Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells.
|
| |
Mol Microbiol,
64,
111-124.
|
 |
|
|
|
|
 |
A.Yamagata,
and
J.A.Tainer
(2007).
Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism.
|
| |
EMBO J,
26,
878-890.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Zolghadr,
S.Weber,
Z.Szabó,
A.J.Driessen,
and
S.V.Albers
(2007).
Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus.
|
| |
Mol Microbiol,
64,
795-806.
|
 |
|
|
|
|
 |
F.E.Aas,
H.C.Winther-Larsen,
M.Wolfgang,
S.Frye,
C.Løvold,
N.Roos,
J.P.van Putten,
and
M.Koomey
(2007).
Substitutions in the N-terminal alpha helical spine of Neisseria gonorrhoeae pilin affect Type IV pilus assembly, dynamics and associated functions.
|
| |
Mol Microbiol,
63,
69-85.
|
 |
|
|
|
|
 |
J.K.Hansen,
K.P.Demick,
J.M.Mansfield,
and
K.T.Forest
(2007).
Conserved regions from Neisseria gonorrhoeae pilin are immunosilent and not immunosuppressive.
|
| |
Infect Immun,
75,
4138-4147.
|
 |
|
|
|
|
 |
M.Tomich,
P.J.Planet,
and
D.H.Figurski
(2007).
The tad locus: postcards from the widespread colonization island.
|
| |
Nat Rev Microbiol,
5,
363-375.
|
 |
|
|
|
|
 |
S.Voisin,
J.V.Kus,
S.Houliston,
F.St-Michael,
D.Watson,
D.G.Cvitkovitch,
J.Kelly,
J.R.Brisson,
and
L.L.Burrows
(2007).
Glycosylation of Pseudomonas aeruginosa strain Pa5196 type IV pilins with mycobacterium-like alpha-1,5-linked d-Araf oligosaccharides.
|
| |
J Bacteriol,
189,
151-159.
|
 |
|
|
|
|
 |
S.Vucetic,
H.Xie,
L.M.Iakoucheva,
C.J.Oldfield,
A.K.Dunker,
Z.Obradovic,
and
V.N.Uversky
(2007).
Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions.
|
| |
J Proteome Res,
6,
1899-1916.
|
 |
|
|
|
|
 |
Z.Szabó,
A.O.Stahl,
S.V.Albers,
J.C.Kissinger,
A.J.Driessen,
and
M.Pohlschröder
(2007).
Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases.
|
| |
J Bacteriol,
189,
772-778.
|
 |
|
|
|
|
 |
A.M.Balakrishna,
Y.Y.Tan,
H.Y.Mok,
A.M.Saxena,
and
K.Swaminathan
(2006).
Crystallization and preliminary X-ray diffraction analysis of Salmonella typhi PilS.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
1024-1026.
|
 |
|
|
|
|
 |
A.Touhami,
M.H.Jericho,
J.M.Boyd,
and
T.J.Beveridge
(2006).
Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy.
|
| |
J Bacteriol,
188,
370-377.
|
 |
|
|
|
|
 |
C.L.Giltner,
E.J.van Schaik,
G.F.Audette,
D.Kao,
R.S.Hodges,
D.J.Hassett,
and
R.T.Irvin
(2006).
The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces.
|
| |
Mol Microbiol,
59,
1083-1096.
|
 |
|
|
|
|
 |
L.Craig,
N.Volkmann,
A.S.Arvai,
M.E.Pique,
M.Yeager,
E.H.Egelman,
and
J.A.Tainer
(2006).
Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions.
|
| |
Mol Cell,
23,
651-662.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Tomich,
D.H.Fine,
and
D.H.Figurski
(2006).
The TadV protein of Actinobacillus actinomycetemcomitans is a novel aspartic acid prepilin peptidase required for maturation of the Flp1 pilin and TadE and TadF pseudopilins.
|
| |
J Bacteriol,
188,
6899-6914.
|
 |
|
|
|
|
 |
S.V.Albers,
Z.Szabó,
and
A.J.Driessen
(2006).
Protein secretion in the Archaea: multiple paths towards a unique cell surface.
|
| |
Nat Rev Microbiol,
4,
537-547.
|
 |
|
|
|
|
 |
S.de Bentzmann,
M.Aurouze,
G.Ball,
and
A.Filloux
(2006).
FppA, a novel Pseudomonas aeruginosa prepilin peptidase involved in assembly of type IVb pili.
|
| |
J Bacteriol,
188,
4851-4860.
|
 |
|
|
|
|
 |
T.L.Johnson,
J.Abendroth,
W.G.Hol,
and
M.Sandkvist
(2006).
Type II secretion: from structure to function.
|
| |
FEMS Microbiol Lett,
255,
175-186.
|
 |
|
|
|
|
 |
A.Z.Nevesinjac,
and
T.L.Raivio
(2005).
The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli.
|
| |
J Bacteriol,
187,
672-686.
|
 |
|
|
|
|
 |
J.C.Hsieh,
D.M.Tham,
W.Feng,
F.Huang,
S.Embaie,
K.Liu,
D.Dean,
R.Hertle,
D.J.Fitzgerald,
and
R.J.Mrsny
(2005).
Intranasal immunization strategy to impede pilin-mediated binding of Pseudomonas aeruginosa to airway epithelial cells.
|
| |
Infect Immun,
73,
7705-7717.
|
 |
|
|
|
|
 |
J.G.Smedley,
E.Jewell,
J.Roguskie,
J.Horzempa,
A.Syboldt,
D.B.Stolz,
and
P.Castric
(2005).
Influence of pilin glycosylation on Pseudomonas aeruginosa 1244 pilus function.
|
| |
Infect Immun,
73,
7922-7931.
|
 |
|
|
|
|
 |
J.Sánchez,
and
J.Holmgren
(2005).
Virulence factors, pathogenesis and vaccine protection in cholera and ETEC diarrhea.
|
| |
Curr Opin Immunol,
17,
388-398.
|
 |
|
|
|
|
 |
L.L.Burrows
(2005).
Weapons of mass retraction.
|
| |
Mol Microbiol,
57,
878-888.
|
 |
|
|
|
|
 |
S.Ramboarina,
P.J.Fernandes,
S.Daniell,
S.Islam,
P.Simpson,
G.Frankel,
F.Booy,
M.S.Donnenberg,
and
S.Matthews
(2005).
Structure of the bundle-forming pilus from enteropathogenic Escherichia coli.
|
| |
J Biol Chem,
280,
40252-40260.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.H.Lee,
O.O.Kolade,
K.Nomura,
D.N.Arvidson,
and
S.Y.He
(2005).
Use of dominant-negative HrpA mutants to dissect Hrp pilus assembly and type III secretion in Pseudomonas syringae pv. tomato.
|
| |
J Biol Chem,
280,
21409-21417.
|
 |
|
|
|
|
 |
B.Maier,
M.Koomey,
and
M.P.Sheetz
(2004).
A force-dependent switch reverses type IV pilus retraction.
|
| |
Proc Natl Acad Sci U S A,
101,
10961-10966.
|
 |
|
|
|
|
 |
H.Remaut,
and
G.Waksman
(2004).
Structural biology of bacterial pathogenesis.
|
| |
Curr Opin Struct Biol,
14,
161-170.
|
 |
|
|
|
|
 |
L.Craig,
M.E.Pique,
and
J.A.Tainer
(2004).
Type IV pilus structure and bacterial pathogenicity.
|
| |
Nat Rev Microbiol,
2,
363-378.
|
 |
|
|
|
|
 |
M.Asaduzzaman,
E.T.Ryan,
M.John,
L.Hang,
A.I.Khan,
A.S.Faruque,
R.K.Taylor,
S.B.Calderwood,
and
F.Qadri
(2004).
The major subunit of the toxin-coregulated pilus TcpA induces mucosal and systemic immunoglobulin A immune responses in patients with cholera caused by Vibrio cholerae O1 and O139.
|
| |
Infect Immun,
72,
4448-4454.
|
 |
|
|
|
|
 |
R.Köhler,
K.Schäfer,
S.Müller,
G.Vignon,
K.Diederichs,
A.Philippsen,
P.Ringler,
A.P.Pugsley,
A.Engel,
and
W.Welte
(2004).
Structure and assembly of the pseudopilin PulG.
|
| |
Mol Microbiol,
54,
647-664.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.K.Taylor,
T.J.Kirn,
M.D.Meeks,
T.K.Wade,
and
W.F.Wade
(2004).
A Vibrio cholerae classical TcpA amino acid sequence induces protective antibody that binds an area hypothesized to be important for toxin-coregulated pilus structure.
|
| |
Infect Immun,
72,
6050-6060.
|
 |
|
|
|
|
 |
X.F.Xu,
Y.W.Tan,
L.Lam,
J.Hackett,
M.Zhang,
and
Y.K.Mok
(2004).
NMR structure of a type IVb pilin from Salmonella typhi and its assembly into pilus.
|
| |
J Biol Chem,
279,
31599-31605.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.F.Audette,
R.T.Irvin,
and
B.Hazes
(2003).
Purification, crystallization and preliminary diffraction studies of the Pseudomonas aeruginosa strain K122-4 monomeric pilin.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
1665-1667.
|
 |
|
|
|
|
 |
L.Hang,
M.John,
M.Asaduzzaman,
E.A.Bridges,
C.Vanderspurt,
T.J.Kirn,
R.K.Taylor,
J.D.Hillman,
A.Progulske-Fox,
M.Handfield,
E.T.Ryan,
and
S.B.Calderwood
(2003).
Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae.
|
| |
Proc Natl Acad Sci U S A,
100,
8508-8513.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |