spacer
spacer

PDBsum entry 1okk

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Cell cycle PDB id
1okk
Jmol
Contents
Protein chains
290 a.a. *
265 a.a. *
Ligands
GCP ×2
BZP ×2
SO4 ×11
EDO ×4
Metals
_MG ×2
Waters ×568
* Residue conservation analysis
PDB id:
1okk
Name: Cell cycle
Title: Homo-heterodimeric complex of the srp gtpases
Structure: Signal recognition particle protein. Chain: a. Fragment: ng domain, residues 0-293. Synonym: fifty-four homolog, ffh. Engineered: yes. Cell division protein ftsy. Chain: d. Fragment: ng domain, residues 2-304. Engineered: yes
Source: Thermus aquaticus. Organism_taxid: 271. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
Biol. unit: Dimer (from PDB file)
Resolution:
2.05Å     R-factor:   0.156     R-free:   0.193
Authors: P.J.Focia,D.M.Freymann
Key ref:
P.J.Focia et al. (2004). Heterodimeric GTPase core of the SRP targeting complex. Science, 303, 373-377. PubMed id: 14726591 DOI: 10.1126/science.1090827
Date:
26-Jul-03     Release date:   19-Jan-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O07347  (SRP54_THEAQ) -  Signal recognition particle protein
Seq:
Struc:
430 a.a.
290 a.a.
Protein chain
Pfam   ArchSchema ?
P83749  (FTSY_THEAQ) -  Signal recognition particle receptor FtsY
Seq:
Struc:
304 a.a.
265 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     membrane   5 terms 
  Biological process     protein targeting to membrane   3 terms 
  Biochemical function     nucleotide binding     5 terms  

 

 
DOI no: 10.1126/science.1090827 Science 303:373-377 (2004)
PubMed id: 14726591  
 
 
Heterodimeric GTPase core of the SRP targeting complex.
P.J.Focia, I.V.Shepotinovskaya, J.A.Seidler, D.M.Freymann.
 
  ABSTRACT  
 
Two structurally homologous guanosine triphosphatase (GTPase) domains interact directly during signal recognition particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The 2.05 angstrom structure of a complex of the NG GTPase domains of Ffh and FtsY reveals a remarkably symmetric heterodimer sequestering a composite active site that contains two bound nucleotides. The structure explains the coordinate activation of the two GTPases. Conformational changes coupled to formation of their extensive interface may function allosterically to signal formation of the targeting complex to the signal-sequence binding site and the translocon. We propose that the complex represents a molecular "latch" and that its disengagement is regulated by completion of assembly of the GTPase active site.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. An extensive interaction surface. (A) The molecular surfaces of the Ffh monomer (left) and the FtsY monomer (right) are shown, shaded by the change in accessible surface area at each residue between the monomer and in the heterodimer. The blue areas define the protein-protein contact. The GTP binding motifs I to IV are indicated, and the Mg2+ nucleotide ligands are shown in ball and stick representation. A symmetric triangular contact region above the active site cavity is termed the latch. The IBD regions of the two proteins contact one another below the active site cleft. The packing orientation in the complex can be visualized by rotating the monomers to overlay the yellow asterisks. Arrows on the surface of the FtsY monomer highlight the orientation of the Asp/Lys framework (black) and the latch interface (pink) presented in the following panels. (B) The framework formed by Asp229(219) of the DGQ motif (see table S1) and Lys256(246) of motif IV from both monomers is shown superimposed to emphasize the symmetry between Ffh and FtsY in the complex. This symmetric interaction lies approximately along the diagonal ridge located above the active site clefts in (A). The lysine hydrogen bonds to both P-loops, thus bridging the interface. In all figures, residues from FtsY are labeled in gray italics font and from Ffh in black font. (C) The symmetric latch interface between the N and G domains, corresponding to the close loop contacts seen above the adjacent P-loops in Fig. 1A. The conserved hydrophobic residues of the ALLEADV motifs of the N domains (top) and the symmetric glycine pair of the DGQ motifs of the G domains (bottom) are shown along with the pair of bridging aspartate and glutamine residues.
Figure 3.
Fig. 3. Conformational changes generate the heterodimer interface. (A) The structure of the Ffh NG domain with GMPPNP bound (1JPJ [PDB] .pdb) (in lighter colors) is superimposed with its structure in the complex. The N domain moves as a rigid body toward helix 3 of the G domain; this shift, in turn, is coupled to conformational rearrangement in the DGQ motif at the N terminus of 3, enabling formation of the extensive heterodimeric contact there. Helix 4 moves with the N domain, accommodated by an 2.9 Å translation of the remainder of helix 3. Note the concurrent reorientation of the C-terminal helix. (B) G-domain conformational changes associated with complex formation are limited to the loops of conserved sequence motifs. The magnitude of the shifts are mapped so that the largest shifts ( 6.5 Å) are the darkest shaded regions. (C) Reorientation of motifs II and III upon complex formation. The left panel shows the Ffh NG GMPPNP structure, the right panel Ffh NG in the complex. The side chain of motif III residue Leu192 moves to insert into a pocket across the heterodimer interface, between the guanine base and Gly259(249) that follows motif IV. Movement of this leucine and the accompanying rearrangement of the motif III backbone allows the P-loop to open sufficiently to accommodate the nucleotide in an extended conformation (10). Motif II residues Asp135 and Arg138 move into the catalytic chamber. The same configuration is observed in FtsY.
 
  The above figures are reprinted by permission from the AAAs: Science (2004, 303, 373-377) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23235881 K.Shen, S.Arslan, D.Akopian, T.Ha, and S.O.Shan (2012).
Activated GTPase movement on an RNA scaffold drives co-translational protein targeting.
  Nature, 492, 271-275.  
23142984 W.Holtkamp, S.Lee, T.Bornemann, T.Senyushkina, M.V.Rodnina, and W.Wintermeyer (2012).
Dynamic switch of the signal recognition particle from scanning to targeting.
  Nat Struct Mol Biol, 19, 1332-1337.  
22056770 G.Bange, N.Kümmerer, P.Grudnik, R.Lindner, G.Petzold, D.Kressler, E.Hurt, K.Wild, and I.Sinning (2011).
Structural basis for the molecular evolution of SRP-GTPase activation by protein.
  Nat Struct Mol Biol, 18, 1376-1380.
PDB code: 3syn
21291501 I.Saraogi, and S.O.Shan (2011).
Molecular mechanism of co-translational protein targeting by the signal recognition particle.
  Traffic, 12, 535-542.  
21151118 L.F.Estrozi, D.Boehringer, S.O.Shan, N.Ban, and C.Schaffitzel (2011).
Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor.
  Nat Struct Mol Biol, 18, 88-90.
PDB code: 2xkv
  21465554 M.J.Yang, and X.Zhang (2011).
Molecular dynamics simulations reveal structural coordination of Ffh-FtsY heterodimer toward GTPase activation.
  Proteins, 79, 1774-1785.  
21276251 N.Pawlowski, A.Khaminets, J.P.Hunn, N.Papic, A.Schmidt, R.C.Uthaiah, R.Lange, G.Vopper, S.Martens, E.Wolf, and J.C.Howard (2011).
The activation mechanism of Irga6, an interferon-inducible GTPase contributing to mouse resistance against Toxoplasma gondii.
  BMC Biol, 9, 7.  
21255212 P.Kuhn, B.Weiche, L.Sturm, E.Sommer, F.Drepper, B.Warscheid, V.Sourjik, and H.G.Koch (2011).
The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon.
  Traffic, 12, 563-578.  
22086371 R.S.Hegde, and R.J.Keenan (2011).
Tail-anchored membrane protein insertion into the endoplasmic reticulum.
  Nat Rev Mol Cell Biol, 12, 787-798.  
21330537 S.F.Ataide, N.Schmitz, K.Shen, A.Ke, S.O.Shan, J.A.Doudna, and N.Ban (2011).
The crystal structure of the signal recognition particle in complex with its receptor.
  Science, 331, 881-886.
PDB code: 2xxa
21336278 T.Hainzl, S.Huang, G.Meriläinen, K.Brännström, and A.E.Sauer-Eriksson (2011).
Structural basis of signal-sequence recognition by the signal recognition particle.
  Nat Struct Mol Biol, 18, 389-391.
PDB code: 3ndb
20648672 D.Fabris, and E.T.Yu (2010).
Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D.
  J Mass Spectrom, 45, 841-860.  
20064164 D.Guymer, J.Maillard, M.F.Agacan, C.A.Brearley, and F.Sargent (2010).
Intrinsic GTPase activity of a bacterial twin-arginine translocation proofreading chaperone induced by domain swapping.
  FEBS J, 277, 511-525.  
20385832 K.Shen, and S.O.Shan (2010).
Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting.
  Proc Natl Acad Sci U S A, 107, 7698-7703.  
20179341 K.Wild, G.Bange, G.Bozkurt, B.Segnitz, A.Hendricks, and I.Sinning (2010).
Structural insights into the assembly of the human and archaeal signal recognition particles.
  Acta Crystallogr D Biol Crystallogr, 66, 295-303.
PDB codes: 3ktv 3ktw
  21113240 M.Mossalam, A.S.Dixon, and C.S.Lim (2010).
Controlling subcellular delivery to optimize therapeutic effect.
  Ther Deliv, 1, 169-193.  
20544960 M.Yang, X.Zhang, and K.Han (2010).
Molecular dynamics simulation of SRP GTPases: towards an understanding of the complex formation from equilibrium fluctuations.
  Proteins, 78, 2222-2237.  
20498370 S.Falk, and I.Sinning (2010).
cpSRP43 is a novel chaperone specific for light-harvesting chlorophyll a,b-binding proteins.
  J Biol Chem, 285, 21655-21661.  
20204450 S.J.Facey, and A.Kuhn (2010).
Biogenesis of bacterial inner-membrane proteins.
  Cell Mol Life Sci, 67, 2343-2362.  
20733058 V.Q.Lam, D.Akopian, M.Rome, D.Henningsen, and S.O.Shan (2010).
Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting.
  J Cell Biol, 190, 623-635.  
19305415 B.C.Cross, I.Sinning, J.Luirink, and S.High (2009).
Delivering proteins for export from the cytosol.
  Nat Rev Mol Cell Biol, 10, 255-264.  
19029307 I.A.Buskiewicz, J.Jöckel, M.V.Rodnina, and W.Wintermeyer (2009).
Conformation of the signal recognition particle in ribosomal targeting complexes.
  RNA, 15, 44-54.  
19717591 M.Balaban, S.N.Joslin, and D.R.Hendrixson (2009).
FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni.
  J Bacteriol, 191, 6602-6611.  
19531245 M.M.Meyer, T.D.Ames, D.P.Smith, Z.Weinberg, M.S.Schwalbach, S.J.Giovannoni, and R.R.Breaker (2009).
Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique'.
  BMC Genomics, 10, 268.  
19912622 M.Mircheva, D.Boy, B.Weiche, F.Hucke, P.Graumann, and H.G.Koch (2009).
Predominant membrane localization is an essential feature of the bacterial signal recognition particle receptor.
  BMC Biol, 7, 76.  
19293157 N.J.Marty, D.Rajalingam, A.D.Kight, N.E.Lewis, D.Fologea, T.K.Kumar, R.L.Henry, and R.L.Goforth (2009).
The membrane-binding motif of the chloroplast signal recognition particle receptor (cpFtsY) regulates GTPase activity.
  J Biol Chem, 284, 14891-14903.  
19558326 P.Grudnik, G.Bange, and I.Sinning (2009).
Protein targeting by the signal recognition particle.
  Biol Chem, 390, 775-782.  
19587121 P.Jaru-Ampornpan, T.X.Nguyen, and S.O.Shan (2009).
A distinct mechanism to achieve efficient signal recognition particle (SRP)-SRP receptor interaction by the chloroplast srp pathway.
  Mol Biol Cell, 20, 3965-3973.  
19424291 R.Gasper, S.Meyer, K.Gotthardt, M.Sirajuddin, and A.Wittinghofer (2009).
It takes two to tango: regulation of G proteins by dimerization.
  Nat Rev Mol Cell Biol, 10, 423-429.  
19806182 S.Meyer, S.Böhme, A.Krüger, H.J.Steinhoff, J.P.Klare, and A.Wittinghofer (2009).
Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.
  PLoS Biol, 7, e1000212.
PDB codes: 3gee 3geh 3gei
19469550 S.O.Shan, S.L.Schmid, and X.Zhang (2009).
Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases.
  Biochemistry, 48, 6696-6704.  
19843281 V.Kriechbaumer, R.Shaw, J.Mukherjee, C.G.Bowsher, A.M.Harrison, and B.M.Abell (2009).
Subcellular distribution of tail-anchored proteins in Arabidopsis.
  Traffic, 10, 1753-1764.  
18434546 C.Kötting, A.Kallenbach, Y.Suveyzdis, A.Wittinghofer, and K.Gerwert (2008).
The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy.
  Proc Natl Acad Sci U S A, 105, 6260-6265.  
18411293 J.W.Rosch, L.A.Vega, J.M.Beyer, A.Lin, and M.G.Caparon (2008).
The signal recognition particle pathway is required for virulence in Streptococcus pyogenes.
  Infect Immun, 76, 2612-2619.  
18650931 K.Gotthardt, M.Weyand, A.Kortholt, P.J.Van Haastert, and A.Wittinghofer (2008).
Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase.
  EMBO J, 27, 2239-2249.
PDB codes: 3dpt 3dpu
18068366 M.Oreb, I.Tews, and E.Schleiff (2008).
Policing Tic 'n' Toc, the doorway to chloroplasts.
  Trends Cell Biol, 18, 19-27.  
18978942 P.F.Egea, H.Tsuruta, G.P.de Leon, J.Napetschnig, P.Walter, and R.M.Stroud (2008).
Structures of the signal recognition particle receptor from the archaeon Pyrococcus furiosus: implications for the targeting step at the membrane.
  PLoS ONE, 3, e3619.
PDB codes: 3dm9 3dmd 3e70
18953414 P.F.Egea, J.Napetschnig, P.Walter, and R.M.Stroud (2008).
Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus.
  PLoS ONE, 3, e3528.
PDB codes: 3dlu 3dlv 3dm5
18400179 P.Koenig, M.Oreb, A.Höfle, S.Kaltofen, K.Rippe, I.Sinning, E.Schleiff, and I.Tews (2008).
The GTPase cycle of the chloroplast import receptors Toc33/Toc34: implications from monomeric and dimeric structures.
  Structure, 16, 585-596.
PDB codes: 3bb1 3bb3 3bb4
19172744 S.B.Neher, N.Bradshaw, S.N.Floor, J.D.Gross, and P.Walter (2008).
SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction.
  Nat Struct Mol Biol, 15, 916-923.  
18931411 U.D.Ramirez, P.J.Focia, and D.M.Freymann (2008).
Nucleotide-binding flexibility in ultrahigh-resolution structures of the SRP GTPase Ffh.
  Acta Crystallogr D Biol Crystallogr, 64, 1043-1053.
PDB codes: 2c03 2c04
18347066 Y.Jiang, Z.Cheng, E.C.Mandon, and R.Gilmore (2008).
An interaction between the SRP receptor and the translocon is critical during cotranslational protein translocation.
  J Cell Biol, 180, 1149-1161.  
17622352 C.L.Reyes, E.Rutenber, P.Walter, and R.M.Stroud (2007).
X-ray structures of the signal recognition particle receptor reveal targeting cycle intermediates.
  PLoS ONE, 2, e607.
PDB codes: 2q9a 2q9b 2q9c
17261809 D.Barillà, E.Carmelo, and F.Hayes (2007).
The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif.
  Proc Natl Acad Sci U S A, 104, 1811-1816.  
17164479 F.Y.Siu, R.J.Spanggord, and J.A.Doudna (2007).
SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting.
  RNA, 13, 240-250.  
17699634 G.Bange, G.Petzold, K.Wild, R.O.Parlitz, and I.Sinning (2007).
The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP.
  Proc Natl Acad Sci U S A, 104, 13621-13625.
PDB codes: 2px0 2px3
18029258 G.Bange, K.Wild, and I.Sinning (2007).
Protein translocation: checkpoint role for SRP GTPase activation.
  Curr Biol, 17, R980-R982.  
17184999 J.Gawronski-Salerno, and D.M.Freymann (2007).
Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY.
  J Struct Biol, 158, 122-128.
PDB code: 2j7p
17186523 J.Gawronski-Salerno, J.S.Coon, P.J.Focia, and D.M.Freymann (2007).
X-ray structure of the T. aquaticus FtsY:GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases.
  Proteins, 66, 984-995.
PDB code: 2iyl
17507650 N.Bradshaw, and P.Walter (2007).
The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting.
  Mol Biol Cell, 18, 2728-2734.  
17475780 P.Jaru-Ampornpan, S.Chandrasekar, and S.O.Shan (2007).
Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA.
  Mol Biol Cell, 18, 2636-2645.  
17682051 S.O.Shan, S.Chandrasekar, and P.Walter (2007).
Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation.
  J Cell Biol, 178, 611-620.  
17846429 T.Hainzl, S.Huang, and A.E.Sauer-Eriksson (2007).
Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle.
  Proc Natl Acad Sci U S A, 104, 14911-14916.
PDB code: 2v3c
16511497 A.Ghosh, G.J.Praefcke, L.Renault, A.Wittinghofer, and C.Herrmann (2006).
How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
  Nature, 440, 101-104.
PDB codes: 2b8w 2b92 2bc9 2d4h
16763562 A.Scrima, and A.Wittinghofer (2006).
Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element.
  EMBO J, 25, 2940-2951.
PDB codes: 2gj8 2gj9 2gja
16968776 C.Kötting, M.Blessenohl, Y.Suveyzdis, R.S.Goody, A.Wittinghofer, and K.Gerwert (2006).
A phosphoryl transfer intermediate in the GTPase reaction of Ras in complex with its GTPase-activating protein.
  Proc Natl Acad Sci U S A, 103, 13911-13916.  
16820862 H.J.Dong, S.M.Tao, Y.Q.Li, S.H.Chan, X.L.Shen, C.X.Wang, and W.J.Guan (2006).
Analysis of the GTPase activity and active sites of the NG domains of FtsY and Ffh from Streptomyces coelicolor.
  Acta Biochim Biophys Sin (Shanghai), 38, 467-476.  
16987964 I.L.Mainprize, D.R.Beniac, E.Falkovskaia, R.M.Cleverley, L.M.Gierasch, F.P.Ottensmeyer, and D.W.Andrews (2006).
The structure of Escherichia coli signal recognition particle revealed by scanning transmission electron microscopy.
  Mol Biol Cell, 17, 5063-5074.  
16753030 J.R.Scott, and T.C.Barnett (2006).
Surface proteins of gram-positive bacteria and how they get there.
  Annu Rev Microbiol, 60, 397-423.  
17082791 K.Mitra, J.Frank, and A.Driessen (2006).
Co- and post-translational translocation through the protein-conducting channel: analogous mechanisms at work?
  Nat Struct Mol Biol, 13, 957-964.  
16469117 K.Römisch, F.W.Miller, B.Dobberstein, and S.High (2006).
Human autoantibodies against the 54 kDa protein of the signal recognition particle block function at multiple stages.
  Arthritis Res Ther, 8, R39.  
16485133 L.Cladière, K.Hamze, E.Madec, V.M.Levdikov, A.J.Wilkinson, I.B.Holland, and S.J.Séror (2006).
The GTPase, CpgA(YloQ), a putative translation factor, is implicated in morphogenesis in Bacillus subtilis.
  Mol Genet Genomics, 275, 409-420.  
17086193 M.Halic, M.Blau, T.Becker, T.Mielke, M.R.Pool, K.Wild, I.Sinning, and R.Beckmann (2006).
Following the signal sequence from ribosomal tunnel exit to signal recognition particle.
  Nature, 444, 507-511.
PDB codes: 2j28 2j37
16627619 T.U.Schwartz, D.Schmidt, S.G.Brohawn, and G.Blobel (2006).
Homodimerization of the G protein SRbeta in the nucleotide-free state involves proline cis/trans isomerization in the switch II region.
  Proc Natl Acad Sci U S A, 103, 6823-6828.
PDB code: 2ged
17139088 U.D.Ramirez, and D.M.Freymann (2006).
Analysis of protein hydration in ultrahigh-resolution structures of the SRP GTPase Ffh.
  Acta Crystallogr D Biol Crystallogr, 62, 1520-1534.
PDB codes: 2j45 2j46
15937164 A.Haddad, R.W.Rose, and M.Pohlschröder (2005).
The Haloferax volcanii FtsY homolog is critical for haloarchaeal growth but does not require the A domain.
  J Bacteriol, 187, 4015-4022.  
16126486 E.van Anken, and I.Braakman (2005).
Versatility of the endoplasmic reticulum protein folding factory.
  Crit Rev Biochem Mol Biol, 40, 191-228.  
15923378 I.Buskiewicz, A.Kubarenko, F.Peske, M.V.Rodnina, and W.Wintermeyer (2005).
Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY.
  RNA, 11, 947-957.  
16153172 J.Luirink, G.von Heijne, E.Houben, and J.W.de Gier (2005).
Biogenesis of inner membrane proteins in Escherichia coli.
  Annu Rev Microbiol, 59, 329-355.  
16153164 M.Pohlschröder, E.Hartmann, N.J.Hand, K.Dilks, and A.Haddad (2005).
Diversity and evolution of protein translocation.
  Annu Rev Microbiol, 59, 91.  
16299512 R.J.Spanggord, F.Siu, A.Ke, and J.A.Doudna (2005).
RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle.
  Nat Struct Mol Biol, 12, 1116-1122.  
16100277 S.R.Ainavarapu, L.Li, C.L.Badilla, and J.M.Fernandez (2005).
Ligand binding modulates the mechanical stability of dihydrofolate reductase.
  Biophys J, 89, 3337-3344.  
15635448 T.A.Leonard, P.J.Butler, and J.Löwe (2005).
Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch.
  EMBO J, 24, 270-282.
PDB codes: 1wcv 2bej 2bek
15229647 B.M.Abell, M.R.Pool, O.Schlenker, I.Sinning, and S.High (2004).
Signal recognition particle mediates post-translational targeting in eukaryotes.
  EMBO J, 23, 2755-2764.  
15546976 F.Chu, S.O.Shan, D.T.Moustakas, F.Alber, P.F.Egea, R.M.Stroud, P.Walter, and A.L.Burlingame (2004).
Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry.
  Proc Natl Acad Sci U S A, 101, 16454-16459.  
15189152 J.A.Doudna, and R.T.Batey (2004).
Structural insights into the signal recognition particle.
  Annu Rev Biochem, 73, 539-557.  
15228518 K.Wild, K.R.Rosendal, and I.Sinning (2004).
A structural step into the SRP cycle.
  Mol Microbiol, 53, 357-363.  
15523481 K.Wild, M.Halic, I.Sinning, and R.Beckmann (2004).
SRP meets the ribosome.
  Nat Struct Mol Biol, 11, 1049-1053.  
15558053 M.A.Oliva, S.C.Cordell, and J.Löwe (2004).
Structural insights into FtsZ protofilament formation.
  Nat Struct Mol Biol, 11, 1243-1250.
PDB codes: 1w58 1w59 1w5a 1w5b 1w5e 1w5f
15313232 S.H.White, and G.von Heijne (2004).
The machinery of membrane protein assembly.
  Curr Opin Struct Biol, 14, 397-404.  
15383838 S.O.Shan, R.M.Stroud, and P.Walter (2004).
Mechanism of association and reciprocal activation of two GTPases.
  PLoS Biol, 2, e320.  
15356269 Y.G.Ren, K.W.Wagner, D.A.Knee, P.Aza-Blanc, M.Nasoff, and Q.L.Deveraux (2004).
Differential regulation of the TRAIL death receptors DR4 and DR5 by the signal recognition particle.
  Mol Biol Cell, 15, 5064-5074.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.