spacer
spacer

PDBsum entry 1oez

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
1oez
Jmol
Contents
Protein chain
125 a.a. *
Ligands
SO4 ×4
Metals
_ZN ×4
Waters ×277
* Residue conservation analysis
PDB id:
1oez
Name: Oxidoreductase
Title: Zn his46arg mutant of human cu, zn superoxide dismutase
Structure: Superoxide dismutase [cu-zn]. Chain: w, x, y, z. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: saccharomyces cerevisiae. Expression_system_taxid: 4932. Expression_system_variant: yep351
Biol. unit: Dimer (from PDB file)
Resolution:
2.15Å     R-factor:   0.208     R-free:   0.234
Authors: R.W.Strange,S.Antonyuk,M.A.Hough,P.Doucette,J.Rodriguez,J.S. P.J.Hart,L.J.Hayward,J.S.Valentine,S.S.Hasnain
Key ref:
J.S.Elam et al. (2003). Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat Struct Biol, 10, 461-467. PubMed id: 12754496 DOI: 10.1038/nsb935
Date:
02-Apr-03     Release date:   29-May-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P00441  (SODC_HUMAN) -  Superoxide dismutase [Cu-Zn]
Seq:
Struc:
154 a.a.
125 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.1.15.1.1  - Superoxide dismutase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 superoxide + 2 H+ = O2 + H2O2
2 × superoxide
+ 2 × H(+)
= O(2)
+ H(2)O(2)
      Cofactor: Iron or manganese or (zinc and copper)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular region   16 terms 
  Biological process     reactive oxygen species metabolic process   62 terms 
  Biochemical function     antioxidant activity     12 terms  

 

 
    Added reference    
 
 
DOI no: 10.1038/nsb935 Nat Struct Biol 10:461-467 (2003)
PubMed id: 12754496  
 
 
Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS.
J.S.Elam, A.B.Taylor, R.Strange, S.Antonyuk, P.A.Doucette, J.A.Rodriguez, S.S.Hasnain, L.J.Hayward, J.S.Valentine, T.O.Yeates, P.J.Hart.
 
  ABSTRACT  
 
Mutations in the SOD1 gene cause the autosomal dominant, neurodegenerative disorder familial amyotrophic lateral sclerosis (FALS). In spinal cord neurons of human FALS patients and in transgenic mice expressing these mutant proteins, aggregates containing FALS SOD1 are observed. Accumulation of SOD1 aggregates is believed to interfere with axonal transport, protein degradation and anti-apoptotic functions of the neuronal cellular machinery. Here we show that metal-deficient, pathogenic SOD1 mutant proteins crystallize in three different crystal forms, all of which reveal higher-order assemblies of aligned beta-sheets. Amyloid-like filaments and water-filled nanotubes arise through extensive interactions between loop and beta-barrel elements of neighboring mutant SOD1 molecules. In all cases, non-native conformational changes permit a gain of interaction between dimers that leads to higher-order arrays. Normal beta-sheet-containing proteins avoid such self-association by preventing their edge strands from making intermolecular interactions. Loss of this protection through conformational rearrangement in the metal-deficient enzyme could be a toxic property common to mutants of SOD1 linked to FALS.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. GOI interfaces in pathogenic SOD1 give rise to cross- fibrils in two different crystal systems. (a) Orthogonal views of the linear, amyloid-like filaments represented by three dimers shown from top to bottom in green, gold and blue, respectively. Both the S134N and apo H46R linear filaments are represented by the single filament shown in panels i -iv. The GOI interface is red in the filament in i and boxed in ii -iv. In iv, which is rotated 90 relative to ii and iii, -strands 1, 2, 3 and 6, comprising one-half of each SOD1 -barrel, are shown in red. The 'cross- ' structure observed in amyloid fibrils is shown schematically in v. (b) Stereo view of the GOI interface in the S134N filament. Residues 125 -131 of the electrostatic loop from one S134N dimer (orange) interact with a depression in the -barrel of a neighboring S134N dimer (green) in the crystal lattice. Water molecules are represented as black spheres. The 1.3 [A]^55-weighted electron density, with coefficients 2mF[o] - DF[c], is contoured at 1.0 . (c) Small hydrophobic core formed at the GOI interface in the linear, pathogenic SOD1 filaments (see text). The image is an enlargement of the region boxed in image iii of panel a.
Figure 4.
Figure 4. Gain-of-interaction in Zn -H46R SOD1 giving rise to water-filled helical filaments. (a) One-half of the helical Zn -H46R filament, shown in i and ii, is represented by the two dimers shown from top to bottom in green and gold. Image ii is related to the left half of iii by a rotation of 90. A schematic diagram of the tubular filament is shown in iv. In iii, the approximate location of the crystallographic two-fold axis that runs along the diagonal in the tetragonal unit cell is indicated by a black line without arrows and a 180 rotation symbol. Application of this two-fold operator generates one complete turn of the helical filament. The double-headed black arrow indicates the diameter of the helical filament, and the blue arrow indicates the diameter of the central cavity. The GOI interface between Zn -H46R dimers is boxed. In iii, -strands 1, 2, 3 and 6, which form one-half of each SOD1 -barrel, are shown in red. The zinc loop forms a short -strand (blue) that reciprocally adds to this -sheet in neighboring Zn -H46R dimers, stabilizing the GOI interface. Zinc ions are shown as purple spheres. (b) Stereo view of the GOI interface in the Zn -H46R helical filament. Residues 78 -81 of the zinc loop from one Zn -H46R dimer (orange) interact with an exposed edge of a -strand in a neighboring Zn -H46R dimer (green) in the crystal and vice versa. Zinc ions are represented as purple spheres. The 2.15 [A]^55-weighted electron density, with coefficients 2mF[o] - DF[c], is contoured at 1.0 . Water molecules have been omitted for clarity. (c) Stereo view of two turns of the helical filament generated by repetition of the GOIs in the Zn -H46R structure. This view of the helical filament is rotated 90 around a horizontal axis relative to images iii and vi of panel a. Successive Zn -H46R dimers (green, yellow, blue and red) comprise one turn of the helical filament with a pitch of 35 .
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2003, 10, 461-467) copyright 2003.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21104697 A.D.Schuyler, H.A.Carlson, and E.L.Feldman (2011).
Computational methods for identifying a layered allosteric regulatory mechanism for ALS-causing mutations of Cu-Zn superoxide dismutase 1.
  Proteins, 79, 417-427.  
21257910 K.A.Vassall, H.R.Stubbs, H.A.Primmer, M.S.Tong, S.M.Sullivan, R.Sobering, S.Srinivasan, L.A.Briere, S.D.Dunn, W.Colón, and E.M.Meiering (2011).
Decreased stability and increased formation of soluble aggregates by immature superoxide dismutase do not account for disease severity in ALS.
  Proc Natl Acad Sci U S A, 108, 2210-2215.  
20404910 A.K.Svensson, O.Bilsel, C.Kayatekin, J.A.Adefusika, J.A.Zitzewitz, and C.R.Matthews (2010).
Metal-free ALS variants of dimeric human Cu,Zn-superoxide dismutase have enhanced populations of monomeric species.
  PLoS One, 5, e10064.  
20032312 A.V.Kajava, U.Baxa, and A.C.Steven (2010).
Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils.
  FASEB J, 24, 1311-1319.  
20184893 C.Kayatekin, J.A.Zitzewitz, and C.R.Matthews (2010).
Disulfide-reduced ALS variants of Cu, Zn superoxide dismutase exhibit increased populations of unfolded species.
  J Mol Biol, 398, 320-331.  
20399791 C.Münch, and A.Bertolotti (2010).
Exposure of hydrophobic surfaces initiates aggregation of diverse ALS-causing superoxide dismutase-1 mutants.
  J Mol Biol, 399, 512-525.  
20808835 J.Yin, S.Hu, W.Jiang, L.Liu, S.Lan, X.Song, and C.Liu (2010).
DNA-triggered aggregation of copper, zinc superoxide dismutase in the presence of ascorbate.
  PLoS One, 5, e12328.  
20333435 L.Banci, I.Bertini, F.Cantini, and S.Ciofi-Baffoni (2010).
Cellular copper distribution: a mechanistic systems biology approach.
  Cell Mol Life Sci, 67, 2563-2589.  
20498711 R.Chia, M.H.Tattum, S.Jones, J.Collinge, E.M.Fisher, and G.S.Jackson (2010).
Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis.
  PLoS One, 5, e10627.  
20232802 R.J.Nowak, G.D.Cuny, S.Choi, P.T.Lansbury, and S.S.Ray (2010).
Improving binding specificity of pharmacological chaperones that target mutant superoxide dismutase-1 linked to familial amyotrophic lateral sclerosis using computational methods.
  J Med Chem, 53, 2709-2718.  
20052996 Z.You, X.Cao, A.B.Taylor, P.J.Hart, and R.L.Levine (2010).
Characterization of a covalent polysulfane bridge in copper-zinc superoxide dismutase .
  Biochemistry, 49, 1191-1198.
PDB code: 3k91
19800308 A.Galaleldeen, R.W.Strange, L.J.Whitson, S.V.Antonyuk, N.Narayana, A.B.Taylor, J.P.Schuermann, S.P.Holloway, S.S.Hasnain, and P.J.Hart (2009).
Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A.
  Arch Biochem Biophys, 492, 40-47.
PDB codes: 2wko 3gzo 3gzp 3gzq
19497878 A.Nordlund, L.Leinartaite, K.Saraboji, C.Aisenbrey, G.Gröbner, P.Zetterström, J.Danielsson, D.T.Logan, and M.Oliveberg (2009).
Functional features cause misfolding of the ALS-provoking enzyme SOD1.
  Proc Natl Acad Sci U S A, 106, 9667-9672.
PDB code: 3hff
19651777 A.Tiwari, A.Liba, S.H.Sohn, S.V.Seetharaman, O.Bilsel, C.R.Matthews, P.J.Hart, J.S.Valentine, and L.J.Hayward (2009).
Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis.
  J Biol Chem, 284, 27746-27758.  
19150364 C.S.Mitchell, and R.H.Lee (2009).
A quantitative examination of the role of cargo-exerted forces in axonal transport.
  J Theor Biol, 257, 430-437.  
19227972 D.D.Winkler, J.P.Schuermann, X.Cao, S.P.Holloway, D.R.Borchelt, M.C.Carroll, J.B.Proescher, V.C.Culotta, and P.J.Hart (2009).
Structural and biophysical properties of the pathogenic SOD1 variant H46R/H48Q.
  Biochemistry, 48, 3436-3447.
PDB code: 3gqf
19088715 F.Chiti, and C.M.Dobson (2009).
Amyloid formation by globular proteins under native conditions.
  Nat Chem Biol, 5, 15-22.  
19635794 K.S.Molnar, N.M.Karabacak, J.L.Johnson, Q.Wang, A.Tiwari, L.J.Hayward, S.J.Coales, Y.Hamuro, and J.N.Agar (2009).
A common property of amyotrophic lateral sclerosis-associated variants: destabilization of the copper/zinc superoxide dismutase electrostatic loop.
  J Biol Chem, 284, 30965-30973.  
19828437 K.Teilum, M.H.Smith, E.Schulz, L.C.Christensen, G.Solomentsev, M.Oliveberg, and M.Akke (2009).
Transient structural distortion of metal-free Cu/Zn superoxide dismutase triggers aberrant oligomerization.
  Proc Natl Acad Sci U S A, 106, 18273-18278.  
19369197 L.Banci, I.Bertini, M.Boca, V.Calderone, F.Cantini, S.Girotto, and M.Vieru (2009).
Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants.
  Proc Natl Acad Sci U S A, 106, 6980-6985.
PDB codes: 3ecu 3ecv 3ecw
18711722 O.J.Clarke, and M.J.Parker (2009).
Identification of amyloidogenic peptide sequences using a coarse-grained physicochemical model.
  J Comput Chem, 30, 621-630.  
19774549 O.V.Nevzglyadova, A.V.Artemov, A.G.Mittenberg, K.V.Solovyov, E.I.Kostyleva, E.V.Mikhailova, I.M.Kuznetsova, K.K.Turoverov, and T.R.Soidla (2009).
Prion-associated proteins in yeast: comparative analysis of isogenic [PSI(+)] and [psi(-)] strains.
  Yeast, 26, 611-631.  
19596823 S.V.Seetharaman, M.Prudencio, C.Karch, S.P.Holloway, D.R.Borchelt, and P.J.Hart (2009).
Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis.
  Exp Biol Med (Maywood), 234, 1140-1154.  
19696882 V.Castillo, and S.Ventura (2009).
Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases.
  PLoS Comput Biol, 5, e1000476.  
19436494 A.Nordlund, and M.Oliveberg (2008).
SOD1-associated ALS: a promising system for elucidating the origin of protein-misfolding disease.
  HFSP J, 2, 354-364.  
18192269 B.F.Shaw, H.L.Lelie, A.Durazo, A.M.Nersissian, G.Xu, P.K.Chan, E.B.Gralla, A.Tiwari, L.J.Hayward, D.R.Borchelt, J.S.Valentine, and J.P.Whitelegge (2008).
Detergent-insoluble aggregates associated with amyotrophic lateral sclerosis in transgenic mice contain primarily full-length, unmodified superoxide dismutase-1.
  J Biol Chem, 283, 8340-8350.  
18316367 C.M.Karch, and D.R.Borchelt (2008).
A limited role for disulfide cross-linking in the aggregation of mutant SOD1 linked to familial amyotrophic lateral sclerosis.
  J Biol Chem, 283, 13528-13537.  
18666836 E.M.Meiering (2008).
The threat of instability: neurodegeneration predicted by protein destabilization and aggregation propensity.
  PLoS Biol, 6, e193.  
17763469 G.Cozza, S.Moro, and G.Gotte (2008).
Elucidation of the ribonuclease A aggregation process mediated by 3D domain swapping: a computational approach reveals possible new multimeric structures.
  Biopolymers, 89, 26-39.  
18370853 M.Cozzolino, A.Ferri, and M.T.Carrì (2008).
Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications.
  Antioxid Redox Signal, 10, 405-443.  
18666828 Q.Wang, J.L.Johnson, N.Y.Agar, and J.N.Agar (2008).
Protein aggregation and protein instability govern familial amyotrophic lateral sclerosis patient survival.
  PLoS Biol, 6, e170.  
18537545 U.Baxa (2008).
Structural basis of infectious and non-infectious amyloids.
  Curr Alzheimer Res, 5, 308-318.  
18690666 W.Jiang, B.Zhang, J.Yin, L.Liu, L.Wang, and C.Liu (2008).
Polymorphism of the SOD1-DNA aggregation species can be modulated by DNA.
  Biopolymers, 89, 1154-1169.  
18552350 Y.Furukawa, K.Kaneko, K.Yamanaka, T.V.O'Halloran, and N.Nukina (2008).
Complete Loss of Post-translational Modifications Triggers Fibrillar Aggregation of SOD1 in the Familial Form of Amyotrophic Lateral Sclerosis.
  J Biol Chem, 283, 24167-24176.  
17636119 A.Gruzman, W.L.Wood, E.Alpert, M.D.Prasad, R.G.Miller, J.D.Rothstein, R.Bowser, R.Hamilton, T.D.Wood, D.W.Cleveland, V.R.Lingappa, and J.Liu (2007).
Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis.
  Proc Natl Acad Sci U S A, 104, 12524-12529.  
17068817 A.J.Marchut, and C.K.Hall (2007).
Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations.
  Proteins, 66, 96.  
17888947 B.R.Roberts, J.A.Tainer, E.D.Getzoff, D.A.Malencik, S.R.Anderson, V.C.Bomben, K.R.Meyers, P.A.Karplus, and J.S.Beckman (2007).
Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS.
  J Mol Biol, 373, 877-890.
PDB code: 2r27
17582169 D.L.Makino, A.H.Henschen-Edman, S.B.Larson, and A.McPherson (2007).
Bence Jones KWR protein structures determined by X-ray crystallography.
  Acta Crystallogr D Biol Crystallogr, 63, 780-792.
PDB codes: 2old 2omb 2omn
17092942 J.Wang, A.Caruano-Yzermans, A.Rodriguez, J.P.Scheurmann, H.H.Slunt, X.Cao, J.Gitlin, P.J.Hart, and D.R.Borchelt (2007).
Disease-associated mutations at copper ligand histidine residues of superoxide dismutase 1 diminish the binding of copper and compromise dimer stability.
  J Biol Chem, 282, 345-352.
PDB code: 2nnx
  19164912 M.T.Pastor, A.Esteras-Chopo, and L.Serrano (2007).
Hacking the code of amyloid formation: the amyloid stretch hypothesis.
  Prion, 1, 9.  
17277077 M.Urushitani, S.A.Ezzi, and J.P.Julien (2007).
Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis.
  Proc Natl Acad Sci U S A, 104, 2495-2500.  
17548825 R.W.Strange, C.W.Yong, W.Smith, and S.S.Hasnain (2007).
Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu-Zn superoxide dismutase.
  Proc Natl Acad Sci U S A, 104, 10040-10044.
PDB code: 2v0a
16945901 A.Ferri, M.Cozzolino, C.Crosio, M.Nencini, A.Casciati, E.B.Gralla, G.Rotilio, J.S.Valentine, and M.T.Carrì (2006).
Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials.
  Proc Natl Acad Sci U S A, 103, 13860-13865.  
16644738 B.F.Shaw, A.Durazo, A.M.Nersissian, J.P.Whitelegge, K.F.Faull, and J.S.Valentine (2006).
Local unfolding in a destabilized, pathogenic variant of superoxide dismutase 1 observed with H/D exchange and mass spectrometry.
  J Biol Chem, 281, 18167-18176.  
16441516 J.Wang, G.Xu, and D.R.Borchelt (2006).
Mapping superoxide dismutase 1 domains of non-native interaction: roles of intra- and intermolecular disulfide bonding in aggregation.
  J Neurochem, 96, 1277-1288.  
16291742 L.Banci, I.Bertini, F.Cantini, N.D'Amelio, and E.Gaggelli (2006).
Human SOD1 before harboring the catalytic metal: solution structure of copper-depleted, disulfide-reduced form.
  J Biol Chem, 281, 2333-2337.
PDB code: 2af2
16880213 M.C.Carroll, C.E.Outten, J.B.Proescher, L.Rosenfeld, W.H.Watson, L.J.Whitson, P.J.Hart, L.T.Jensen, and V.Cizewski Culotta (2006).
The effects of glutaredoxin and copper activation pathways on the disulfide and stability of Cu,Zn superoxide dismutase.
  J Biol Chem, 281, 28648-28656.  
16698543 M.J.Bennett, M.R.Sawaya, and D.Eisenberg (2006).
Deposition diseases and 3D domain swapping.
  Structure, 14, 811-824.  
16963458 M.R.Ho, Y.C.Lou, W.C.Lin, P.C.Lyu, W.N.Huang, and C.Chen (2006).
Human pancreatitis-associated protein forms fibrillar aggregates with a native-like conformation.
  J Biol Chem, 281, 33566-33576.
PDB code: 2go0
16369483 M.Urushitani, A.Sik, T.Sakurai, N.Nukina, R.Takahashi, and J.P.Julien (2006).
Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis.
  Nat Neurosci, 9, 108-118.  
16516535 P.J.Hart (2006).
Pathogenic superoxide dismutase structure, folding, aggregation and turnover.
  Curr Opin Chem Biol, 10, 131-138.  
16563741 R.Nelson, and D.Eisenberg (2006).
Recent atomic models of amyloid fibril structure.
  Curr Opin Struct Biol, 16, 260-265.  
16488975 S.D.Khare, and N.V.Dokholyan (2006).
Common dynamical signatures of familial amyotrophic lateral sclerosis-associated structurally diverse Cu, Zn superoxide dismutase mutants.
  Proc Natl Acad Sci U S A, 103, 3147-3152.  
16871532 S.L.Rebelo, S.E.Bainbridge, M.R.Amel-Kashipaz, P.M.Radford, R.J.Powell, I.Todd, and P.J.Tighe (2006).
Modeling of tumor necrosis factor receptor superfamily 1A mutants associated with tumor necrosis factor receptor-associated periodic syndrome indicates misfolding consistent with abnormal function.
  Arthritis Rheum, 54, 2674-2687.  
16491092 T.R.Jahn, M.J.Parker, S.W.Homans, and S.E.Radford (2006).
Amyloid formation under physiological conditions proceeds via a native-like folding intermediate.
  Nat Struct Mol Biol, 13, 195-201.  
16636274 Y.Furukawa, R.Fu, H.X.Deng, T.Siddique, and T.V.O'Halloran (2006).
Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice.
  Proc Natl Acad Sci U S A, 103, 7148-7153.  
16771675 Y.Furukawa, and T.V.O'Halloran (2006).
Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis.
  Antioxid Redox Signal, 8, 847-867.  
15958382 A.Tiwari, Z.Xu, and L.J.Hayward (2005).
Aberrantly increased hydrophobicity shared by mutants of Cu,Zn-superoxide dismutase in familial amyotrophic lateral sclerosis.
  J Biol Chem, 280, 29771-29779.  
15755678 C.Cheroni, M.Peviani, P.Cascio, S.Debiasi, C.Monti, and C.Bendotti (2005).
Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome.
  Neurobiol Dis, 18, 509-522.  
15753080 H.Tummala, C.Jung, A.Tiwari, C.M.Higgins, L.J.Hayward, and Z.Xu (2005).
Inhibition of chaperone activity is a shared property of several Cu,Zn-superoxide dismutase mutants that cause amyotrophic lateral sclerosis.
  J Biol Chem, 280, 17725-17731.  
16020530 J.A.Rodriguez, B.F.Shaw, A.Durazo, S.H.Sohn, P.A.Doucette, A.M.Nersissian, K.F.Faull, D.K.Eggers, A.Tiwari, L.J.Hayward, and J.S.Valentine (2005).
Destabilization of apoprotein is insufficient to explain Cu,Zn-superoxide dismutase-linked ALS pathogenesis.
  Proc Natl Acad Sci U S A, 102, 10516-10521.  
15952898 J.S.Valentine, P.A.Doucette, and S.Zittin Potter (2005).
Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis.
  Annu Rev Biochem, 74, 563-593.  
16105836 L.Banci, I.Bertini, N.D'Amelio, E.Gaggelli, E.Libralesso, I.Matecko, P.Turano, and J.S.Valentine (2005).
Fully metallated S134N Cu,Zn-superoxide dismutase displays abnormal mobility and intermolecular contacts in solution.
  J Biol Chem, 280, 35815-35821.  
16195234 L.Di Noto, L.J.Whitson, X.Cao, P.J.Hart, and R.L.Levine (2005).
Proteasomal degradation of mutant superoxide dismutases linked to amyotrophic lateral sclerosis.
  J Biol Chem, 280, 39907-39913.  
15522870 N.Fujiwara, Y.Miyamoto, K.Ogasahara, M.Takahashi, T.Ikegami, R.Takamiya, K.Suzuki, and N.Taniguchi (2005).
Different immunoreactivity against monoclonal antibodies between wild-type and mutant copper/zinc superoxide dismutase linked to amyotrophic lateral sclerosis.
  J Biol Chem, 280, 5061-5070.  
15840828 S.Antonyuk, J.S.Elam, M.A.Hough, R.W.Strange, P.A.Doucette, J.A.Rodriguez, L.J.Hayward, J.S.Valentine, P.J.Hart, and S.S.Hasnain (2005).
Structural consequences of the familial amyotrophic lateral sclerosis SOD1 mutant His46Arg.
  Protein Sci, 14, 1201-1213.  
15799963 Y.J.Kim, R.Nakatomi, T.Akagi, T.Hashikawa, and R.Takahashi (2005).
Unsaturated fatty acids induce cytotoxic aggregate formation of amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutants.
  J Biol Chem, 280, 21515-21521.  
15062777 A.F.Miller (2004).
Superoxide dismutases: active sites that save, but a protein that kills.
  Curr Opin Chem Biol, 8, 162-168.  
15245475 A.Maatkamp, A.Vlug, E.Haasdijk, D.Troost, P.J.French, and D.Jaarsma (2004).
Decrease of Hsp25 protein expression precedes degeneration of motoneurons in ALS-SOD1 mice.
  Eur J Neurosci, 20, 14-28.  
15034941 B.J.Turner, E.C.Lopes, and S.S.Cheema (2004).
Inducible superoxide dismutase 1 aggregation in transgenic amyotrophic lateral sclerosis mouse fibroblasts.
  J Cell Biochem, 91, 1074-1084.  
15019975 B.Leinweber, E.Barofsky, D.F.Barofsky, V.Ermilov, K.Nylin, and J.S.Beckman (2004).
Aggregation of ALS mutant superoxide dismutase expressed in Escherichia coli.
  Free Radic Biol Med, 36, 911-918.  
15310460 C.Bendotti, and M.T.Carrì (2004).
Lessons from models of SOD1-linked familial ALS.
  Trends Mol Med, 10, 393-400.  
15130579 E.L.Holzbaur (2004).
Motor neurons rely on motor proteins.
  Trends Cell Biol, 14, 233-240.  
15056757 M.A.Hough, J.G.Grossmann, S.V.Antonyuk, R.W.Strange, P.A.Doucette, J.A.Rodriguez, L.J.Whitson, P.J.Hart, L.J.Hayward, J.S.Valentine, and S.S.Hasnain (2004).
Dimer destabilization in superoxide dismutase may result in disease-causing properties: structures of motor neuron disease mutants.
  Proc Natl Acad Sci U S A, 101, 5976-5981.
PDB codes: 1uxl 1uxm
15249659 M.I.Ivanova, M.R.Sawaya, M.Gingery, A.Attinger, and D.Eisenberg (2004).
An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril.
  Proc Natl Acad Sci U S A, 101, 10584-10589.  
15522970 M.J.Lindberg, J.Normark, A.Holmgren, and M.Oliveberg (2004).
Folding of human superoxide dismutase: disulfide reduction prevents dimerization and produces marginally stable monomers.
  Proc Natl Acad Sci U S A, 101, 15893-15898.  
15198682 M.Urushitani, J.Kurisu, M.Tateno, S.Hatakeyama, K.Nakayama, S.Kato, and R.Takahashi (2004).
CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70.
  J Neurochem, 90, 231-244.  
15501681 N.J.Marianayagam, M.Sunde, and J.M.Matthews (2004).
The power of two: protein dimerization in biology.
  Trends Biochem Sci, 29, 618-625.  
15485869 P.A.Doucette, L.J.Whitson, X.Cao, V.Schirf, B.Demeler, J.S.Valentine, J.C.Hansen, and P.J.Hart (2004).
Dissociation of human copper-zinc superoxide dismutase dimers using chaotrope and reductant. Insights into the molecular basis for dimer stability.
  J Biol Chem, 279, 54558-54566.  
15475574 S.D.Khare, M.Caplow, and N.V.Dokholyan (2004).
The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis.
  Proc Natl Acad Sci U S A, 101, 15094-15099.  
12886009 M.R.Cookson (2003).
Crystallizing ideas about Parkinson's disease.
  Proc Natl Acad Sci U S A, 100, 9111-9113.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.