spacer
spacer

PDBsum entry 1oac

Go to PDB code: 
protein metals Protein-protein interface(s) links
Oxidoreductase PDB id
1oac
Jmol
Contents
Protein chains
720 a.a. *
Metals
_CA ×4
_CU ×2
Waters ×968
* Residue conservation analysis
PDB id:
1oac
Name: Oxidoreductase
Title: Crystal structure of a quinoenzyme: copper amine oxidase of escherichia coli at 2 angstroems resolution
Structure: Copper amine oxidase. Chain: a, b. Ec: 1.4.3.6
Source: Escherichia coli. Organism_taxid: 562. Cellular_location: periplasm
Biol. unit: Dimer (from PQS)
Resolution:
2.00Å     R-factor:   0.162    
Authors: M.R.Parsons,M.A.Convery,C.M.Wilmot,S.E.V.Phillips
Key ref:
M.R.Parsons et al. (1995). Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Structure, 3, 1171-1184. PubMed id: 8591028 DOI: 10.1016/S0969-2126(01)00253-2
Date:
27-Sep-95     Release date:   03-Apr-96    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P46883  (AMO_ECOLI) -  Primary amine oxidase
Seq:
Struc:
 
Seq:
Struc:
757 a.a.
720 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.1.4.3.21  - Primary-amine oxidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RCH2NH2 + H2O + O2 = RCHO + NH3 + H2O2
RCH(2)NH(2)
+ H(2)O
+ O(2)
= RCHO
+ NH(3)
+ H(2)O(2)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     periplasmic space   1 term 
  Biological process     oxidation-reduction process   4 terms 
  Biochemical function     tryptamine:oxygen oxidoreductase (deaminating) activity     10 terms  

 

 
    reference    
 
 
DOI no: 10.1016/S0969-2126(01)00253-2 Structure 3:1171-1184 (1995)
PubMed id: 8591028  
 
 
Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution.
M.R.Parsons, M.A.Convery, C.M.Wilmot, K.D.Yadav, V.Blakeley, A.S.Corner, S.E.Phillips, M.J.McPherson, P.F.Knowles.
 
  ABSTRACT  
 
BACKGROUND: Copper amine oxidases are a ubiquitous and novel group of quinoenzymes that catalyze the oxidative deamination of primary amines to the corresponding aldehydes, with concomitant reduction of molecular oxygen to hydrogen peroxide. The enzymes are dimers of identical 70-90 kDa subunits, each of which contains a single copper ion and a covalently bound cofactor formed by the post-translational modification of a tyrosine side chain to 2,4,5-trihydroxyphenylalanine quinone (TPQ). RESULTS: The crystal structure of amine oxidase from Escherichia coli has been determined in both an active and an inactive form. The only structural differences are in the active site, where differences in copper coordination geometry and in the position and interactions of the redox cofactor, TPQ, are observed. Each subunit of the mushroom-shaped dimer comprises four domains: a 440 amino acid C-terminal beta sandwich domain, which contains the active site and provides the dimer interface, and three smaller peripheral alpha/beta domains (D1-D3), each of about 100 amino acids. D2 and D3 show remarkable structural and sequence similarity to each other and are conserved throughout the quinoenzyme family. In contrast, D1 is absent from some amine oxidases. The active sites are well buried from solvent and lie some 35 A apart, connected by a pair of beta hairpin arms. CONCLUSIONS: The crystal structure of E. coli copper amine oxidase reveals a number of unexpected features and provides a basis for investigating the intriguing similarities and differences in catalytic mechanism of members of this enzyme family. In addition to the three conserved histidines that bind the copper, our studies identify a number of other conserved residues close to the active site, including a candidate for the catalytic base and a fourth conserved histidine which is involved in an interesting intersubunit interaction.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Pathway for the reductive half-reaction of amine oxidase. The numbering used in describing the TPQ moiety is shown in the first panel. The substrate, shown here as a substituted phenylmethylamine, reacts with the active-site TPQ to form the substrate Schiff base (1). Abstraction of the pro-S proton by the general base results in a carbanionic intermediate (2) leading to the product Schiff base (3). Hydrolysis of this species releases the product aldehyde and leaves the redox cofactor in the reduced aminoquinol form (4). TPQ is regenerated by oxidation by molecular oxygen in the oxidative half-reaction. Figure 1. Pathway for the reductive half-reaction of amine oxidase. The numbering used in describing the TPQ moiety is shown in the first panel. The substrate, shown here as a substituted phenylmethylamine, reacts with the active-site TPQ to form the substrate Schiff base (1). Abstraction of the pro-S proton by the general base results in a carbanionic intermediate (2) leading to the product Schiff base (3). Hydrolysis of this species releases the product aldehyde and leaves the redox cofactor in the reduced aminoquinol form (4). TPQ is regenerated by oxidation by molecular oxygen in the oxidative half-reaction.
Figure 6.
Figure 6. Active site of E. coli amine oxidase. The polypeptide backbone is shown as a continuous coil, coloured white for subunit A and grey for subunit B. Conserved residues are shown in all-atom representation and the copper is shown as a green van der Waals dot surface. The position of TPQ in crystal form I is illustrated in green, coordinated to the copper. The precise location and orientation of the TPQ ring is not completely determined at the resolution of the current studies of crystal form II, and its general location is indicated by a yellow phenyl ring, close to the putative catalytic base Asp383 (red). In crystal form II, TPQ is not a copper ligand and the copper coordination is completed by two water molecules, shown in yellow. Figure 6. Active site of E. coli amine oxidase. The polypeptide backbone is shown as a continuous coil, coloured white for subunit A and grey for subunit B. Conserved residues are shown in all-atom representation and the copper is shown as a green van der Waals dot surface. The position of TPQ in crystal form I is illustrated in green, coordinated to the copper. The precise location and orientation of the TPQ ring is not completely determined at the resolution of the current studies of crystal form II, and its general location is indicated by a yellow phenyl ring, close to the putative catalytic base Asp383 (red). In crystal form II, TPQ is not a copper ligand and the copper coordination is completed by two water molecules, shown in yellow. ([3]Figure 5 and [4]Figure 6 generated using MIDASPLUS [[5]51].)
 
  The above figures are reprinted by permission from Cell Press: Structure (1995, 3, 1171-1184) copyright 1995.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21294844 M.L.Di Paolo, M.Lunelli, M.Fuxreiter, A.Rigo, I.Simon, and M.Scarpa (2011).
Active site residue involvement in monoamine or diamine oxidation catalysed by pea seedling amine oxidase.
  FEBS J, 278, 1232-1243.  
  20124708 A.P.McGrath, K.M.Hilmer, C.A.Collyer, D.M.Dooley, and J.M.Guss (2010).
A new crystal form of human diamine oxidase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 137-142.
PDB code: 3k5t
20155950 C.M.Chang, V.J.Klema, B.J.Johnson, M.Mure, J.P.Klinman, and C.M.Wilmot (2010).
Kinetic and structural analysis of substrate specificity in two copper amine oxidases from Hansenula polymorpha.
  Biochemistry, 49, 2540-2550.
PDB code: 3loy
20012114 E.Agostinelli, G.Tempera, N.Viceconte, S.Saccoccio, V.Battaglia, S.Grancara, A.Toninello, and R.Stevanato (2010).
Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach.
  Amino Acids, 38, 353-368.  
20300581 F.Ryvkin, and F.T.Greenaway (2010).
Modeling Cu(II) binding to peptides using the extensible systematic force field.
  Bioinorg Chem Appl, 2010, 724210.  
20052994 M.A.Smith, P.Pirrat, A.R.Pearson, C.R.Kurtis, C.H.Trinh, T.G.Gaule, P.F.Knowles, S.E.Phillips, and M.J.McPherson (2010).
Exploring the roles of the metal ions in Escherichia coli copper amine oxidase.
  Biochemistry, 49, 1268-1280.
PDB codes: 2wo0 2wof 2woh
18687343 A.J.Plested, and M.L.Mayer (2009).
Engineering a high-affinity allosteric binding site for divalent cations in kainate receptors.
  Neuropharmacology, 56, 114-120.  
19764817 A.P.McGrath, K.M.Hilmer, C.A.Collyer, E.M.Shepard, B.O.Elmore, D.E.Brown, D.M.Dooley, and J.M.Guss (2009).
Structure and inhibition of human diamine oxidase.
  Biochemistry, 48, 9810-9822.
PDB codes: 3hi7 3hig 3hii
18723604 C.Peter, J.Laliberté, J.Beaudoin, and S.Labbé (2008).
Copper distributed by Atx1 is available to copper amine oxidase 1 in Schizosaccharomyces pombe.
  Eukaryot Cell, 7, 1781-1794.  
  18607080 D.B.Langley, D.M.Trambaiolo, A.P.Duff, D.M.Dooley, H.C.Freeman, and J.M.Guss (2008).
Complexes of the copper-containing amine oxidase from Arthrobacter globiformis with the inhibitors benzylhydrazine and tranylcypromine.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 577-583.
PDB codes: 1w4n 1w5z
18093969 D.C.Oliver, and M.Paetzel (2008).
Crystal structure of the major periplasmic domain of the bacterial membrane protein assembly facilitator YidC.
  J Biol Chem, 283, 5208-5216.
PDB code: 3blc
18523684 D.M.Soanes, I.Alam, M.Cornell, H.M.Wong, C.Hedeler, N.W.Paton, M.Rattray, S.J.Hubbard, S.G.Oliver, and N.J.Talbot (2008).
Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis.
  PLoS ONE, 3, e2300.  
19053231 E.M.Shepard, K.M.Okonski, and D.M.Dooley (2008).
Kinetics and spectroscopic evidence that the Cu(I)-semiquinone intermediate reduces molecular oxygen in the oxidative half-reaction of Arthrobacter globiformis amine oxidase.
  Biochemistry, 47, 13907-13920.  
18838796 H.Ota, H.Tamezane, Y.Sasano, E.Hokazono, Y.Yasuda, S.Sakasegawa, S.Imamura, T.Tamura, and S.Osawa (2008).
Enzymatic characterization of an amine oxidase from Arthrobacter sp. used to measure phosphatidylethanolamine.
  Biosci Biotechnol Biochem, 72, 2732-2738.  
18981178 M.Kitamura, M.Okuyama, F.Tanzawa, H.Mori, Y.Kitago, N.Watanabe, A.Kimura, I.Tanaka, and M.Yao (2008).
Structural and Functional Analysis of a Glycoside Hydrolase Family 97 Enzyme from Bacteroides thetaiotaomicron.
  J Biol Chem, 283, 36328-36337.
PDB codes: 2d73 2zq0
  19052360 P.Pirrat, M.A.Smith, A.R.Pearson, M.J.McPherson, and S.E.Phillips (2008).
Structure of a xenon derivative of Escherichia coli copper amine oxidase: confirmation of the proposed oxygen-entry pathway.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 1105-1109.
PDB code: 2w0q
17433047 A.Mura, R.Anedda, F.Pintus, M.Casu, A.Padiglia, G.Floris, and R.Medda (2007).
An important lysine residue in copper/quinone-containing amine oxidases.
  FEBS J, 274, 2585-2595.  
17409383 B.J.Johnson, J.Cohen, R.W.Welford, A.R.Pearson, K.Schulten, J.P.Klinman, and C.M.Wilmot (2007).
Exploring molecular oxygen pathways in Hansenula polymorpha copper-containing amine oxidase.
  J Biol Chem, 282, 17767-17776.
PDB codes: 2oov 2oqe
17406963 P.Knowles, C.Kurtis, J.Murray, C.Saysell, W.Tambyrajah, C.Wilmot, M.McPherson, S.Phillips, D.Dooley, D.Brown, M.Rogers, and M.Mure (2007).
Hydrazine and amphetamine binding to amine oxidases: old drugs with new prospects.
  J Neural Transm, 114, 743-746.  
16929109 A.P.Duff, A.E.Cohen, P.J.Ellis, K.Hilmer, D.B.Langley, D.M.Dooley, H.C.Freeman, and J.M.Guss (2006).
The 1.23 Angstrom structure of Pichia pastoris lysyl oxidase reveals a lysine-lysine cross-link.
  Acta Crystallogr D Biol Crystallogr, 62, 1073-1084.
PDB code: 1w7c
  17142890 A.P.Duff, E.M.Shepard, D.B.Langley, D.M.Dooley, H.C.Freeman, and J.M.Guss (2006).
A C-terminal disulfide bond in the copper-containing amine oxidase from pea seedlings violates the twofold symmetry of the molecular dimer.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 1168-1173.  
  17077478 D.B.Langley, A.P.Duff, H.C.Freeman, and J.M.Guss (2006).
The copper-containing amine oxidase from Arthrobacter globiformis: refinement at 1.55 and 2.20 A resolution in two crystal forms.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 1052-1057.
PDB codes: 1w6c 1w6g
16680401 E.Agostinelli, and N.Seiler (2006).
Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications.
  Amino Acids, 31, 341-355.  
16924556 E.M.Shepard, and D.M.Dooley (2006).
Intramolecular electron transfer rate between active-site copper and TPQ in Arthrobacter globiformis amine oxidase.
  J Biol Inorg Chem, 11, 1039-1048.  
16791638 I.Bento, M.A.Carrondo, and P.F.Lindley (2006).
Reduction of dioxygen by enzymes containing copper.
  J Biol Inorg Chem, 11, 539-547.  
16239734 E.Jakobsson, J.Nilsson, D.Ogg, and G.J.Kleywegt (2005).
Structure of human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1.
  Acta Crystallogr D Biol Crystallogr, 61, 1550-1562.
PDB codes: 2c10 2c11
  16511016 E.Jakobsson, J.Nilsson, U.Källström, D.Ogg, and G.J.Kleywegt (2005).
Crystallization of a truncated soluble human semicarbazide-sensitive amine oxidase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 274-278.  
16218874 P.Chaudhuri, K.Wieghardt, T.Weyhermüller, T.K.Paine, S.Mukherjee, and C.Mukherjee (2005).
Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes.
  Biol Chem, 386, 1023-1033.  
15840564 R.A.Ghiladi, G.M.Knudsen, K.F.Medzihradszky, and P.R.Ortiz de Montellano (2005).
The Met-Tyr-Trp cross-link in Mycobacterium tuberculosis catalase-peroxidase (KatG): autocatalytic formation and effect on enzyme catalysis and spectroscopic properties.
  J Biol Chem, 280, 22651-22663.  
15954152 S.Kar, B.Sarkar, S.Ghumaan, D.Janardanan, J.van Slageren, J.Fiedler, V.G.Puranik, R.B.Sunoj, W.Kaim, and G.K.Lahiri (2005).
2,5-Dioxido-1,4-benzoquinonediimine (H2L2-), a hydrogen-bonding noninnocent bridging ligand related to aminated topaquinone: different oxidation state distributions in complexes [{(bpy)2Ru}2(mu-H2L)]n (n=0,+,2+,3+,4+) and [{(acac)2Ru}2(mu-H2L)]m (m=2-,-,0,+,2+).
  Chemistry, 11, 4901-4911.  
16082728 S.M.Maula, T.Salminen, S.Kaitaniemi, Y.Nymalm, D.J.Smith, and S.Jalkanen (2005).
Carbohydrates located on the top of the "cap" contribute to the adhesive and enzymatic functions of vascular adhesion protein-1.
  Eur J Immunol, 35, 2718-2727.  
16046623 T.T.Airenne, Y.Nymalm, H.Kidron, D.J.Smith, M.Pihlavisto, M.Salmi, S.Jalkanen, M.S.Johnson, and T.A.Salminen (2005).
Crystal structure of the human vascular adhesion protein-1: unique structural features with functional implications.
  Protein Sci, 14, 1964-1974.
PDB codes: 1pu4 1us1
15451775 A.Holt, B.Wieland, and G.B.Baker (2004).
Allosteric modulation of semicarbazide-sensitive amine oxidase activities in vitro by imidazoline receptor ligands.
  Br J Pharmacol, 143, 495-507.  
15259025 G.G.Yegutkin, T.Salminen, K.Koskinen, C.Kurtis, M.J.McPherson, S.Jalkanen, and M.Salmi (2004).
A peptide inhibitor of vascular adhesion protein-1 (VAP-1) blocks leukocyte-endothelium interactions under shear stress.
  Eur J Immunol, 34, 2276-2285.  
  16233720 K.Matsumura, H.Hisada, H.Obata, Y.Hata, A.Kawato, Y.Abe, and O.Akita (2004).
A novel amine oxidase-encoding gene from Aspergillus oryzae.
  J Biosci Bioeng, 98, 359-365.  
15300824 T.C.Rosen, S.Yoshida, K.L.Kirk, and G.Haufe (2004).
Fluorinated phenylcyclopropylamines as inhibitors of monoamine oxidases.
  Chembiochem, 5, 1033-1043.  
12930721 A.Lundwall, J.Malm, A.Clauss, C.Valtonen-Andre, and A.Y.Olsson (2003).
Molecular cloning of complementary DNA encoding mouse seminal vesicle-secreted protein SVS I and demonstration of homology with copper amine oxidases.
  Biol Reprod, 69, 1923-1930.  
14690425 A.P.Duff, A.E.Cohen, P.J.Ellis, J.A.Kuchar, D.B.Langley, E.M.Shepard, D.M.Dooley, H.C.Freeman, and J.M.Guss (2003).
The crystal structure of Pichia pastoris lysyl oxidase.
  Biochemistry, 42, 15148-15157.
PDB code: 1n9e
12673620 D.Corpillo, F.Valetti, M.G.Giuffrida, A.Conti, A.Rossi, A.Finazzi-Agrò, and C.Giunta (2003).
Induction and characterization of a novel amine oxidase from the yeast Kluyveromyces marxianus.
  Yeast, 20, 369-379.  
12923184 H.M.Holden, I.Rayment, and J.B.Thoden (2003).
Structure and function of enzymes of the Leloir pathway for galactose metabolism.
  J Biol Chem, 278, 43885-43888.  
14669988 I.Frébort, M.Sebela, S.Hirota, M.Yamada, H.Tamaki, H.Kumagai, O.Adachi, and P.Pec (2003).
Gene organization and molecular modeling of copper amine oxidase from Aspergillus niger: re-evaluation of the cofactor structure.
  Biol Chem, 384, 1451-1461.  
12717027 J.B.Thoden, J.Kim, F.M.Raushel, and H.M.Holden (2003).
The catalytic mechanism of galactose mutarotase.
  Protein Sci, 12, 1051-1059.
PDB codes: 1ns0 1ns2 1ns4 1ns7 1ns8 1nsm 1nsr 1nss 1nsu 1nsv 1nsx 1nsz
14579361 R.P.Bahadur, P.Chakrabarti, F.Rodier, and J.Janin (2003).
Dissecting subunit interfaces in homodimeric proteins.
  Proteins, 53, 708-719.  
12926004 R.Prabhakar, and P.E.Siegbahn (2003).
A comparison of the mechanism for the reductive half-reaction between pea seedling and other copper amine oxidases (CAOs).
  J Comput Chem, 24, 1599-1609.  
12657794 V.Calderone, M.L.Di Paolo, M.Trabucco, M.Biadene, R.Battistutta, A.Rigo, and G.Zanotti (2003).
Crystallization and preliminary X-ray data of amine oxidase from bovine serum.
  Acta Crystallogr D Biol Crystallogr, 59, 727-729.  
12832789 Y.Nymalm, H.Kidron, A.Söderholm, L.Viitanen, K.Kaukonen, M.Pihlavisto, D.Smith, T.Veromaa, T.T.Airenne, M.S.Johnson, and T.A.Salminen (2003).
Crystallization and preliminary X-ray analysis of the human vascular adhesion protein-1.
  Acta Crystallogr D Biol Crystallogr, 59, 1288-1290.  
12153561 E.M.Shepard, J.Smith, B.O.Elmore, J.A.Kuchar, L.M.Sayre, and D.M.Dooley (2002).
Towards the development of selective amine oxidase inhibitors. Mechanism-based inhibition of six copper containing amine oxidases.
  Eur J Biochem, 269, 3645-3658.  
11907040 J.B.Thoden, and H.M.Holden (2002).
High resolution X-ray structure of galactose mutarotase from Lactococcus lactis.
  J Biol Chem, 277, 20854-20861.
PDB codes: 1l7j 1l7k
12218067 J.B.Thoden, J.Kim, F.M.Raushel, and H.M.Holden (2002).
Structural and kinetic studies of sugar binding to galactose mutarotase from Lactococcus lactis.
  J Biol Chem, 277, 45458-45465.
PDB codes: 1mmu 1mmx 1mmy 1mmz 1mn0
12134140 M.Kim, T.Okajima, S.Kishishita, M.Yoshimura, A.Kawamori, K.Tanizawa, and H.Yamaguchi (2002).
X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase.
  Nat Struct Biol, 9, 591-596.
PDB codes: 1ivu 1ivv 1ivw 1ivx
12324440 M.L.Di Paolo, M.Scarpa, A.Corazza, R.Stevanato, and A.Rigo (2002).
Binding of cations of group IA and IIA to bovine serum amine oxidase: effect on the activity.
  Biophys J, 83, 2231-2239.  
12454493 M.Lee, K.Willingham, D.Langley, M.J.Maher, A.E.Cohen, P.J.Ellis, J.A.Kuchar, D.M.Dooley, H.C.Freeman, and J.M.Guss (2002).
Crystallization of Pichia pastoris lysyl oxidase.
  Acta Crystallogr D Biol Crystallogr, 58, 2177-2179.  
11532005 A.Padiglia, R.Medda, A.Lorrai, M.Paci, J.Z.Pedersen, A.Boffi, A.Bellelli, A.F.Agrò, and G.Floris (2001).
Irreversible inhibition of pig kidney copper-containing amine oxidase by sodium and lithium ions.
  Eur J Biochem, 268, 4686-4697.  
11258907 B.Schwartz, A.K.Olgin, and J.P.Klinman (2001).
The role of copper in topa quinone biogenesis and catalysis, as probed by azide inhibition of a copper amine oxidase from yeast.
  Biochemistry, 40, 2954-2963.  
11729263 E.Díaz, A.Ferrández, M.A.Prieto, and J.L.García (2001).
Biodegradation of aromatic compounds by Escherichia coli.
  Microbiol Mol Biol Rev, 65, 523.  
11180321 M.A.Halcrow (2001).
Chemically Modified Amino Acids in Copper Proteins That Bind or Activate Dioxygen The author acknowledges the Royal Society (London) for a University Research Fellowship.
  Angew Chem Int Ed Engl, 40, 346-349.  
11483492 S.Jalkanen, and M.Salmi (2001).
Cell surface monoamine oxidases: enzymes in search of a function.
  EMBO J, 20, 3893-3901.  
10736168 J.E.Dove, B.Schwartz, N.K.Williams, and J.P.Klinman (2000).
Investigation of spectroscopic intermediates during copper-binding and TPQ formation in wild-type and active-site mutants of a copper-containing amine oxidase from yeast.
  Biochemistry, 39, 3690-3698.  
10671529 L.B.Anderson, A.J.Ouellette, and B.A.Barry (2000).
Probing the structure of photosystem II with amines and phenylhydrazine.
  J Biol Chem, 275, 4920-4927.  
10933787 Z.Chen, B.Schwartz, N.K.Williams, R.Li, J.P.Klinman, and F.S.Mathews (2000).
Crystal structure at 2.5 A resolution of zinc-substituted copper amine oxidase of Hansenula polymorpha expressed in Escherichia coli.
  Biochemistry, 39, 9709-9717.
PDB code: 1ekm
10074341 C.E.Ruggiero, and D.M.Dooley (1999).
Stoichiometry of the topa quinone biogenesis reaction in copper amine oxidases.
  Biochemistry, 38, 2892-2898.  
10576737 C.M.Wilmot, J.Hajdu, M.J.McPherson, P.F.Knowles, and S.E.Phillips (1999).
Visualization of dioxygen bound to copper during enzyme catalysis.
  Science, 286, 1724-1728.
PDB codes: 1d6u 1d6y 1d6z
  10210191 D.H.Juers, R.E.Huber, and B.W.Matthews (1999).
Structural comparisons of TIM barrel proteins suggest functional and evolutionary relationships between beta-galactosidase and other glycohydrolases.
  Protein Sci, 8, 122-136.  
  10338009 G.Buse, T.Soulimane, M.Dewor, H.E.Meyer, and M.Blüggel (1999).
Evidence for a copper-coordinated histidine-tyrosine cross-link in the active site of cytochrome oxidase.
  Protein Sci, 8, 985-990.  
10052132 I.Frébort, K.Matsushita, H.Toyama, K.Lemr, M.Yamada, and O.Adachi (1999).
Purification and characterization of methylamine oxidase induced in Aspergillus niger AKU 3302.
  Biosci Biotechnol Biochem, 63, 125-134.  
10090756 J.M.Hevel, S.A.Mills, and J.P.Klinman (1999).
Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase.
  Biochemistry, 38, 3683-3693.  
10387067 J.M.Murray, C.G.Saysell, C.M.Wilmot, W.S.Tambyrajah, J.Jaeger, P.F.Knowles, S.E.Phillips, and M.J.McPherson (1999).
The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants.
  Biochemistry, 38, 8217-8227.
PDB codes: 1dyu 1qaf 1qak 1qal
10387066 J.Plastino, E.L.Green, J.Sanders-Loehr, and J.P.Klinman (1999).
An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha.
  Biochemistry, 38, 8204-8216.  
10226045 M.A.McGuirl, and D.M.Dooley (1999).
Copper-containing oxidases.
  Curr Opin Chem Biol, 3, 138-144.  
10571999 S.Hirota, T.Iwamoto, K.Tanizawa, O.Adachi, and O.Yamauchi (1999).
Spectroscopic characterization of carbon monoxide complexes generated for copper/topa quinone-containing amine oxidases.
  Biochemistry, 38, 14256-14263.  
9482863 A.J.Ouellette, L.B.Anderson, and B.A.Barry (1998).
Amine binding and oxidation at the catalytic site for photosynthetic water oxidation.
  Proc Natl Acad Sci U S A, 95, 2204-2209.  
9843426 B.Schwartz, E.L.Green, J.Sanders-Loehr, and J.P.Klinman (1998).
Relationship between conserved consensus site residues and the productive conformation for the TPQ cofactor in a copper-containing amine oxidase from yeast.
  Biochemistry, 37, 16591-16600.  
9541544 P.J.Gane, J.M.Dunwell, and J.Warwicker (1998).
Modeling based on the structure of vicilins predicts a histidine cluster in the active site of oxalate oxidase.
  J Mol Evol, 46, 488-493.  
9730824 Q.Su, and J.P.Klinman (1998).
Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
  Biochemistry, 37, 12513-12525.  
9811486 R.Cortesi, P.Ascenzi, M.Colasanti, T.Persichini, G.Venturini, M.Bolognesi, A.Pesce, C.Nastruzzi, and E.Menegatti (1998).
Cross-enzyme inhibition by gabexate mesylate: formulation and reactivity study.
  J Pharm Sci, 87, 1335-1340.  
9551552 R.Li, J.P.Klinman, and F.S.Mathews (1998).
Copper amine oxidase from Hansenula polymorpha: the crystal structure determined at 2.4 A resolution reveals the active conformation.
  Structure, 6, 293-307.  
9760229 R.Matsuzaki, and K.Tanizawa (1998).
Exploring a channel to the active site of copper/topaquinone-containing phenylethylamine oxidase by chemical modification and site-specific mutagenesis.
  Biochemistry, 37, 13947-13957.  
9681017 S.G.Møller, and M.J.McPherson (1998).
Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase.
  Plant J, 13, 781-791.  
9706222 W.S.McIntire (1998).
Newly discovered redox cofactors: possible nutritional, medical, and pharmacological relevance to higher animals.
  Annu Rev Nutr, 18, 145-177.  
9048544 C.M.Wilmot, J.M.Murray, G.Alton, M.R.Parsons, M.A.Convery, V.Blakeley, A.S.Corner, M.M.Palcic, P.F.Knowles, M.J.McPherson, and S.E.Phillips (1997).
Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction.
  Biochemistry, 36, 1608-1620.
PDB code: 1spu
9298967 D.Cai, J.Dove, N.Nakamura, J.Sanders-Loehr, and J.P.Klinman (1997).
Mechanism-based inactivation of a yeast methylamine oxidase mutant: implications for the functional role of the consensus sequence surrounding topaquinone.
  Biochemistry, 36, 11472-11478.  
9298968 N.Nakamura, P.Moënne-Loccoz, K.Tanizawa, M.Mure, S.Suzuki, J.P.Klinman, and J.Sanders-Loehr (1997).
Topaquinone-dependent amine oxidases: identification of reaction intermediates by Raman spectroscopy.
  Biochemistry, 36, 11479-11486.  
9428687 R.Medda, A.Padiglia, A.Finazzi Agrò, J.Z.Pedersen, A.Lorrai, and G.Floris (1997).
Tryptamine as substrate and inhibitor of lentil seedling copper amine oxidase.
  Eur J Biochem, 250, 377-382.  
8994881 A.Volbeda, J.C.Fontecilla-Camps, and M.Frey (1996).
Novel metal sites in protein structures.
  Curr Opin Struct Biol, 6, 804-812.  
8805541 F.Mancia, N.H.Keep, A.Nakagawa, P.F.Leadlay, S.McSweeney, B.Rasmussen, P.Bösecke, O.Diat, and P.R.Evans (1996).
How coenzyme B12 radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 A resolution.
  Structure, 4, 339-350.
PDB code: 1req
8898921 G.Houen, E.V.Högdall, V.Barkholt, and L.Nørskov (1996).
Lactoferrin: similarity to diamine oxidase and purification by aminohexyl affinity chromatography.
  Eur J Biochem, 241, 303-308.  
8620882 I.Frébort, H.Tamaki, H.Ishida, P.Pec, L.Luhová, H.Tsuno, M.Halata, Y.Asano, Y.Kato, K.Matsushita, H.Toyama, H.Kumagai, and O.Adachi (1996).
Two distinct quinoprotein amine oxidases are induced by n-butylamine in the mycelia of Aspergillus niger AKU 3302. Purification, characterization, cDNA cloning and sequencing.
  Eur J Biochem, 237, 255-265.  
8805580 V.Kumar, D.M.Dooley, H.C.Freeman, J.M.Guss, I.Harvey, M.A.McGuirl, M.C.Wilce, and V.M.Zubak (1996).
Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution.
  Structure, 4, 943-955.
PDB code: 1ksi
8798429 Y.H.Choi, R.Matsuzaki, S.Suzuki, and K.Tanizawa (1996).
Role of conserved Asn-Tyr-Asp-Tyr sequence in bacterial copper/2,4, 5-trihydroxyphenylalanyl quinone-containing histamine oxidase.
  J Biol Chem, 271, 22598-22603.  
8591022 M.Fontecave, and H.Eklund (1995).
Copper amine oxidase: a novel use for a tyrosine.
  Structure, 3, 1127-1129.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.