PDBsum entry 1np2

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase PDB id
Protein chains
426 a.a. *
Waters ×334
* Residue conservation analysis
PDB id:
Name: Hydrolase
Title: Crystal structure of thermostable beta-glycosidase from thermophilic eubacterium thermus nonproteolyticus hg102
Structure: Beta-glycosidase. Chain: a, b. Engineered: yes
Source: Thermus nonproteolyticus. Organism_taxid: 116039. Strain: hg102. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
2.40Å     R-factor:   0.230     R-free:   0.272
Authors: D.C.Liang,W.R.Chang,X.Q.Wang,X.Y.He
Key ref: X.Wang et al. (2003). Structural basis for thermostability of beta-glycosidase from the thermophilic eubacterium Thermus nonproteolyticus HG102. J Bacteriol, 185, 4248-4255. PubMed id: 12837801
16-Jan-03     Release date:   15-Jul-03    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
Q9L794  (Q9L794_9DEIN) -  Beta-glucosidase
436 a.a.
426 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Beta-glucosidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of terminal, non-reducing beta-D-glucose residues with release of beta-D-glucose.
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     metabolic process   3 terms 
  Biochemical function     hydrolase activity     4 terms  


J Bacteriol 185:4248-4255 (2003)
PubMed id: 12837801  
Structural basis for thermostability of beta-glycosidase from the thermophilic eubacterium Thermus nonproteolyticus HG102.
X.Wang, X.He, S.Yang, X.An, W.Chang, D.Liang.
The three-dimensional structure of a thermostable beta-glycosidase (Gly(Tn)) from the thermophilic eubacterium Thermus nonproteolyticus HG102 was determined at a resolution of 2.4 A. The core of the structure adopts the (betaalpha)(8) barrel fold. The sequence alignments and the positions of the two Glu residues in the active center indicate that Gly(Tn) belongs to the glycosyl hydrolases of retaining family 1. We have analyzed the structural features of Gly(Tn) related to the thermostability and compared its structure with those of other mesophilic glycosidases from plants, eubacteria, and hyperthermophilic enzymes from archaea. Several possible features contributing to the thermostability of Gly(Tn) were elucidated.

Literature references that cite this PDB file's key reference

  PubMed id Reference
21153672 D.Chakravorty, S.Parameswaran, V.K.Dubey, and S.Patra (2011).
In silico characterization of thermostable lipases.
  Extremophiles, 15, 89.  
17357157 A.Ausili, B.Cobucci-Ponzano, B.Di Lauro, R.D'Avino, G.Perugino, E.Bertoli, A.Scirè, M.Rossi, F.Tanfani, and M.Moracci (2007).
A comparative infrared spectroscopic study of glycoside hydrolases from extremophilic archaea revealed different molecular mechanisms of adaptation to high temperatures.
  Proteins, 67, 991.  
17503162 M.León, P.Isorna, M.Menéndez, J.Sanz-Aparicio, and J.Polaina (2007).
Comparative study and mutational analysis of distinctive structural elements of hyperthermophilic enzymes.
  Protein J, 26, 435-444.  
17526788 R.Miyake, J.Kawamoto, Y.L.Wei, M.Kitagawa, I.Kato, T.Kurihara, and N.Esaki (2007).
Construction of a low-temperature protein expression system using a cold-adapted bacterium, Shewanella sp. strain Ac10, as the host.
  Appl Environ Microbiol, 73, 4849-4856.  
15455210 Z.Silva, S.Alarico, and M.S.da Costa (2005).
Trehalose biosynthesis in Thermus thermophilus RQ-1: biochemical properties of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase.
  Extremophiles, 9, 29-36.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.