PDBsum entry 1n0j

Go to PDB code: 
protein metals Protein-protein interface(s) links
Oxidoreductase PDB id
Protein chains
198 a.a. *
_MN ×2
Waters ×169
* Residue conservation analysis
PDB id:
Name: Oxidoreductase
Title: The structure of human mitochondrial mn3+ superoxide dismuta a novel tetrameric interface of two 4-helix bundles
Structure: Superoxide dismutase [mn]. Chain: a, b. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Tetramer (from PDB file)
2.20Å     R-factor:   0.171    
Authors: G.E.O.Borgstahl,H.E.Parge,J.A.Tainer
Key ref:
G.E.Borgstahl et al. (1992). The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell, 71, 107-118. PubMed id: 1394426 DOI: 10.1016/0092-8674(92)90270-M
14-Oct-02     Release date:   06-Nov-02    
Supersedes: 1abm
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P04179  (SODM_HUMAN) -  Superoxide dismutase [Mn], mitochondrial
222 a.a.
198 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Superoxide dismutase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 superoxide + 2 H+ = O2 + H2O2
2 × superoxide
+ 2 × H(+)
= O(2)
+ H(2)O(2)
      Cofactor: Fe cation or Mn(2+) or (Zn(2+) and Cu cation)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     oxidation-reduction process   2 terms 
  Biochemical function     superoxide dismutase activity     2 terms  


    Added reference    
DOI no: 10.1016/0092-8674(92)90270-M Cell 71:107-118 (1992)
PubMed id: 1394426  
The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles.
G.E.Borgstahl, H.E.Parge, M.J.Hickey, W.F.Beyer, R.A.Hallewell, J.A.Tainer.
The 2.2 A resolution crystal structure of recombinant human manganese superoxide dismutase, a homotetrameric enzyme that protects mitochondria against oxygen-mediated free radical damage, has been determined. Within each subunit, both the N-terminal helical hairpin and C-terminal alpha/beta domains contribute ligands to the catalytic manganese site. Two identical 4-helix bundles, symmetrically assembled from the N-terminal helical hairpins, form novel tetrameric interfaces that stabilize the active sites. Structurally altered polymorphic variants with reduced activity, such as tetrameric interface mutant Ile-58 to Thr, may produce not only an early selective advantage, through enhanced cytotoxicity of tumor necrosis factor for virus-infected cells, but also detrimental effects from increased mitochondrial oxidative damage, contributing to degenerative conditions, including diabetes, aging, and Parkinson's and Alzheimer's diseases.
  Selected figure(s)  
Figure 2.
Figure 2. '' Trace f the Two Subunits That Form the Crystallographic Asymmetric Unit and the Dimer Interface
Figure 6.
igure 6. Electron Density and Model for the Central Residues within the CHelix Bundle Interface
  The above figures are reprinted by permission from Cell Press: Cell (1992, 71, 107-118) copyright 1992.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21441914 G.J.Williams, R.S.Williams, J.S.Williams, G.Moncalian, A.S.Arvai, O.Limbo, G.Guenther, S.Sildas, M.Hammel, P.Russell, and J.A.Tainer (2011).
ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair.
  Nat Struct Mol Biol, 18, 423-431.
PDB codes: 3qkr 3qks 3qkt 3qku
21513692 J.S.Pap, B.Kripli, T.Váradi, M.Giorgi, J.Kaizer, and G.Speier (2011).
Comparison of the SOD-like activity of hexacoordinate Mn(II), Fe(II) and Ni(II) complexes having isoindoline-based ligands.
  J Inorg Biochem, 105, 911-918.  
19707802 H.I.Lee, J.W.Lee, T.C.Yang, S.O.Kang, and B.M.Hoffman (2010).
ENDOR and ESEEM investigation of the Ni-containing superoxide dismutase.
  J Biol Inorg Chem, 15, 175-182.  
20972560 H.Xiang, G.Pan, C.R.Vossbrinck, R.Zhang, J.Xu, T.Li, Z.Zhou, C.Lu, and Z.Xiang (2010).
A Tandem Duplication of Manganese Superoxide Dismutase in Nosema bombycis and Its Evolutionary Origins.
  J Mol Evol, 71, 401-414.  
19699328 J.W.Whittaker (2010).
Metal uptake by manganese superoxide dismutase.
  Biochim Biophys Acta, 1804, 298-307.  
20333421 K.C.Ryan, O.E.Johnson, D.E.Cabelli, T.C.Brunold, and M.J.Maroney (2010).
Nickel superoxide dismutase: structural and functional roles of Cys2 and Cys6.
  J Biol Inorg Chem, 15, 795-807.  
20567132 R.Noorbakhsh, S.A.Mortazavi, M.Sankian, F.Shahidi, M.A.Assarehzadegan, and A.Varasteh (2010).
Cloning, expression, characterization, and computational approach for cross-reactivity prediction of manganese superoxide dismutase allergen from pistachio nut.
  Allergol Int, 59, 295-304.  
19018482 C.Dong, G.Li, Z.Li, H.Zhu, M.Zhou, and Z.Hu (2009).
Molecular cloning and expression analysis of an Mn-SOD gene from Nelumbo nucifera.
  Appl Biochem Biotechnol, 158, 605-614.  
19384983 I.Castellano, F.Cecere, A.De Vendittis, R.Cotugno, A.Chambery, A.Di Maro, A.Michniewicz, G.Parlato, M.Masullo, E.V.Avvedimento, E.De Vendittis, and M.R.Ruocco (2009).
Rat mitochondrial manganese superoxide dismutase: Amino acid positions involved in covalent modifications, activity, and heat stability.
  Biopolymers, 91, 1215-1226.  
19384994 J.F.Bachega, M.V.Navarro, L.Bleicher, R.K.Bortoleto-Bugs, D.Dive, P.Hoffmann, E.Viscogliosi, and R.C.Garratt (2009).
Systematic structural studies of iron superoxide dismutases from human parasites and a statistical coupling analysis of metal binding specificity.
  Proteins, 77, 26-37.
PDB codes: 2goj 2gpc 3esf
19265433 J.J.Perry, A.S.Hearn, D.E.Cabelli, H.S.Nick, J.A.Tainer, and D.N.Silverman (2009).
Contribution of human manganese superoxide dismutase tyrosine 34 to structure and catalysis.
  Biochemistry, 48, 3417-3424.
PDB codes: 1zsp 1zte 1zuq 2p4k
19477268 L.Miao, and D.K.St Clair (2009).
Regulation of superoxide dismutase genes: implications in disease.
  Free Radic Biol Med, 47, 344-356.  
19788422 M.Grey, S.Yainoy, V.Prachayasittikul, and L.Bülow (2009).
A superoxide dismutase-human hemoglobin fusion protein showing enhanced antioxidative properties.
  FEBS J, 276, 6195-6203.  
19755112 M.M.Whittaker, and J.W.Whittaker (2009).
In vitro metal uptake by recombinant human manganese superoxide dismutase.
  Arch Biochem Biophys, 491, 69-74.  
19261071 W.Li, L.Qi, X.Lin, H.Chen, Z.Ma, K.Wu, and S.Huang (2009).
The expression of manganese superoxide dismutase gene from Nelumbo nucifera responds strongly to chilling and oxidative stresses.
  J Integr Plant Biol, 51, 279-286.  
18798256 A.Mancini, A.Borrelli, A.Schiattarella, L.Aloj, M.Aurilio, F.Morelli, A.Pica, A.Occhiello, R.Lorizio, R.Mancini, A.Sica, L.Mazzarella, F.Sica, P.Grieco, E.Novellino, D.Pagnozzi, P.Pucci, and J.Rommelaere (2008).
Biophysical and biochemical characterization of a liposarcoma-derived recombinant MnSOD protein acting as an anticancer agent.
  Int J Cancer, 123, 2684-2695.  
  19052361 C.H.Trinh, T.Hunter, E.E.Stewart, S.E.Phillips, and G.J.Hunter (2008).
Purification, crystallization and X-ray structures of the two manganese superoxide dismutases from Caenorhabditis elegans.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 1110-1114.
PDB codes: 3dc5 3dc6
17150313 B.Dash, R.Metz, H.J.Huebner, W.Porter, and T.D.Phillips (2007).
Molecular characterization of two superoxide dismutases from Hydra vulgaris.
  Gene, 387, 93.  
18042279 B.Priya, J.Premanandh, R.T.Dhanalakshmi, T.Seethalakshmi, L.Uma, D.Prabaharan, and G.Subramanian (2007).
Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms.
  BMC Genomics, 8, 435.  
17174478 J.J.Perry, L.Fan, and J.A.Tainer (2007).
Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair.
  Neuroscience, 145, 1280-1299.  
16550599 A.Mancini, A.Borrelli, A.Schiattarella, S.Fasano, A.Occhiello, A.Pica, P.Sehr, M.Tommasino, J.P.Nüesch, and J.Rommelaere (2006).
Tumor suppressive activity of a variant isoform of manganese superoxide dismutase released by a human liposarcoma cell line.
  Int J Cancer, 119, 932-943.  
17020617 I.W.Boucher, A.M.Brzozowski, J.A.Brannigan, C.Schnick, D.J.Smith, S.A.Kyes, and A.J.Wilkinson (2006).
The crystal structure of superoxide dismutase from Plasmodium falciparum.
  BMC Struct Biol, 6, 20.
PDB code: 2bpi
16910778 J.Luo, L.Li, Y.Zhang, D.R.Spitz, G.R.Buettner, L.W.Oberley, and F.E.Domann (2006).
Inactivation of primary antioxidant enzymes in mouse keratinocytes by photodynamically generated singlet oxygen.
  Antioxid Redox Signal, 8, 1307-1314.  
16258041 M.M.Whittaker, K.Mizuno, H.P.Bächinger, and J.W.Whittaker (2006).
Kinetic analysis of the metal binding mechanism of Escherichia coli manganese superoxide dismutase.
  Biophys J, 90, 598-607.  
16601688 M.Yang, P.A.Cobine, S.Molik, A.Naranuntarat, R.Lill, D.R.Winge, and V.C.Culotta (2006).
The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2.
  EMBO J, 25, 1775-1783.  
16443160 P.Quint, R.Reutzel, R.Mikulski, R.McKenna, and D.N.Silverman (2006).
Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation.
  Free Radic Biol Med, 40, 453-458.
PDB codes: 2adp 2adq
16910776 Y.Zhang, B.J.Smith, and L.W.Oberley (2006).
Enzymatic activity is necessary for the tumor-suppressive effects of MnSOD.
  Antioxid Redox Signal, 8, 1283-1293.  
16055318 E.Fréalle, C.Noël, E.Viscogliosi, D.Camus, E.Dei-Cas, and L.Delhaes (2005).
Manganese superoxide dismutase in pathogenic fungi: an issue with pathophysiological and phylogenetic involvements.
  FEMS Immunol Med Microbiol, 45, 411-422.  
15851472 E.Luk, M.Yang, L.T.Jensen, Y.Bourbonnais, and V.C.Culotta (2005).
Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae.
  J Biol Chem, 280, 22715-22720.  
16150974 I.Ayala, J.J.Perry, J.Szczepanski, J.A.Tainer, M.T.Vala, H.S.Nick, and D.N.Silverman (2005).
Hydrogen bonding in human manganese superoxide dismutase containing 3-fluorotyrosine.
  Biophys J, 89, 4171-4179.
PDB codes: 1xdc 1xil
15699630 M.Purrello, C.Di Pietro, M.Ragusa, A.Pulvirenti, R.Giugno, V.Di Pietro, G.Emmanuele, S.Travali, M.Scalia, D.Shasha, and A.Ferro (2005).
In vitro and in silico cloning of Xenopus laevis SOD2 cDNA and its phylogenetic analysis.
  DNA Cell Biol, 24, 111-116.  
14638684 A.S.Hearn, L.Fan, J.R.Lepock, J.P.Luba, W.B.Greenleaf, D.E.Cabelli, J.A.Tainer, H.S.Nick, and D.N.Silverman (2004).
Amino acid substitution at the dimeric interface of human manganese superoxide dismutase.
  J Biol Chem, 279, 5861-5866.
PDB codes: 1pl4 1pm9
14688256 C.A.Davis, A.S.Hearn, B.Fletcher, J.Bickford, J.E.Garcia, V.Leveque, J.A.Melendez, D.N.Silverman, J.Zucali, A.Agarwal, and H.S.Nick (2004).
Potent anti-tumor effects of an active site mutant of human manganese-superoxide dismutase. Evolutionary conservation of product inhibition.
  J Biol Chem, 279, 12769-12776.  
12966547 A.H.Dalpke, R.Thomssen, and K.Ritter (2003).
Oxidative injury to endothelial cells due to Epstein-Barr virus-induced autoantibodies against manganese superoxide dismutase.
  J Med Virol, 71, 408-416.  
12554961 A.Vahedi-Faridi, J.Porta, and G.E.Borgstahl (2003).
Improved three-dimensional growth of manganese superoxide dismutase crystals on the International Space Station.
  Acta Crystallogr D Biol Crystallogr, 59, 385-388.  
12890866 E.Luk, M.Carroll, M.Baker, and V.C.Culotta (2003).
Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family.
  Proc Natl Acad Sci U S A, 100, 10353-10357.  
12939409 F.Archibald (2003).
Oxygen toxicity and the health and survival of eukaryote cells: a new piece is added to the puzzle.
  Proc Natl Acad Sci U S A, 100, 10141-10143.  
12672826 T.Hatta, G.Mukerjee-Dhar, J.Damborsky, H.Kiyohara, and K.Kimbara (2003).
Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8.
  J Biol Chem, 278, 21483-21492.  
12215453 G.Regelsberger, W.Atzenhofer, F.Ruker, G.A.Peschek, C.Jakopitsch, M.Paumann, P.G.Furtmüller, and C.Obinger (2002).
Biochemical characterization of a membrane-bound manganese-containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120.
  J Biol Chem, 277, 43615-43622.  
12446202 R.Radi, A.Cassina, R.Hodara, C.Quijano, and L.Castro (2002).
Peroxynitrite reactions and formation in mitochondria.
  Free Radic Biol Med, 33, 1451-1464.  
12377761 W.B.Greenleaf, and D.N.Silverman (2002).
Activation of the proton transfer pathway in catalysis by iron superoxide dismutase.
  J Biol Chem, 277, 49282-49286.  
11562375 C.Lamarre, J.D.LeMay, N.Deslauriers, and Y.Bourbonnais (2001).
Candida albicans expresses an unusual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase.
  J Biol Chem, 276, 43784-43791.  
11602606 E.E.Luk, and V.C.Culotta (2001).
Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p.
  J Biol Chem, 276, 47556-47562.  
11481695 F.M.Farin, Y.Hitosis, S.E.Hallagan, J.Kushleika, J.S.Woods, P.S.Janssen, T.Smith-Weller, G.M.Franklin, P.D.Swanson, and H.Checkoway (2001).
Genetic polymorphisms of superoxide dismutase in Parkinson's disease.
  Mov Disord, 16, 705-707.  
11157941 M.Merkamm, and A.Guyonvarch (2001).
Cloning of the sodA gene from Corynebacterium melassecola and role of superoxide dismutase in cellular viability.
  J Bacteriol, 183, 1284-1295.  
11141052 R.A.Edwards, M.M.Whittaker, J.W.Whittaker, E.N.Baker, and G.B.Jameson (2001).
Outer sphere mutations perturb metal reactivity in manganese superoxide dismutase.
  Biochemistry, 40, 15-27.
PDB codes: 1en4 1en5 1en6
11294629 R.A.Edwards, M.M.Whittaker, J.W.Whittaker, E.N.Baker, and G.B.Jameson (2001).
Removing a hydrogen bond in the dimer interface of Escherichia coli manganese superoxide dismutase alters structure and reactivity.
  Biochemistry, 40, 4622-4632.
PDB codes: 1i08 1i0h
11285217 V.Durbecq, G.Sainz, Y.Oudjama, B.Clantin, C.Bompard-Gilles, C.Tricot, J.Caillet, V.Stalon, L.Droogmans, and V.Villeret (2001).
Crystal structure of isopentenyl diphosphate:dimethylallyl diphosphate isomerase.
  EMBO J, 20, 1530-1537.
PDB codes: 1hx3 1hzt
10762167 K.Aoyama, K.Matsubara, Y.Fujikawa, Y.Nagahiro, K.Shimizu, N.Umegae, N.Hayase, H.Shiono, and S.Kobayashi (2000).
Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases.
  Ann Neurol, 47, 524-527.  
11154067 S.Kardinahl, S.Anemüller, and G.Schäfer (2000).
The hyper-thermostable Fe-superoxide dismutase from the Archaeon Acidianus ambivalens: characterization, recombinant expression, crystallization and effects of metal exchange.
  Biol Chem, 381, 1089-1101.  
10848964 S.Sugio, B.Y.Hiraoka, and F.Yamakura (2000).
Crystal structure of cambialistic superoxide dismutase from porphyromonas gingivalis.
  Eur J Biochem, 267, 3487-3495.
PDB code: 1qnn
10852710 V.J.Lévêque, M.E.Stroupe, J.R.Lepock, D.E.Cabelli, J.A.Tainer, H.S.Nick, and D.N.Silverman (2000).
Multiple replacements of glutamine 143 in human manganese superoxide dismutase: effects on structure, stability, and catalysis.
  Biochemistry, 39, 7131-7137.
PDB code: 1em1
10455106 A.S.Hearn, C.Tu, H.S.Nick, and D.N.Silverman (1999).
Characterization of the product-inhibited complex in catalysis by human manganese superoxide dismutase.
  J Biol Chem, 274, 24457-24460.  
10488113 C.A.Ramilo, V.Leveque, Y.Guan, J.R.Lepock, J.A.Tainer, H.S.Nick, and D.N.Silverman (1999).
Interrupting the hydrogen bond network at the active site of human manganese superoxide dismutase.
  J Biol Chem, 274, 27711-27716.
PDB code: 2gds
10585544 C.B.Baert, P.Deloron, E.Viscogliosi, M.Dauchez, D.Camus, and D.Dive (1999).
Analysis of genetic diversity at the iron-containing superoxide dismutase locus in Plasmodium falciparum wild isolates.
  FEMS Microbiol Lett, 181, 237-243.  
10532234 P.Dolashka-Angelova, L.Genova, S.Stoeva, B.Stefanov, M.Angelova, R.Hristova, S.Pashova, and W.Voelter (1999).
Isolation and characterization of a novel superoxide dismutase from fungal strain Humicola lutea 110.
  J Pept Res, 54, 279-289.  
10569631 V.Niketíc, S.Stojanović, A.Nikolić, M.Spasić, and A.M.Michelson (1999).
Exposure of Mn and FeSODs, but not Cu/ZnSOD, to NO leads to nitrosonium and nitroxyl ions generation which cause enzyme modification and inactivation: an in vitro study.
  Free Radic Biol Med, 27, 992-996.  
9698380 C.L.Borders, M.J.Bjerrum, M.A.Schirmer, and S.G.Oliver (1998).
Characterization of recombinant Saccharomyces cerevisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli.
  Biochemistry, 37, 11323-11331.  
9561738 E.Viscogliosi, P.Delgado-Viscogliosi, D.Gerbod, M.Dauchez, S.Gratepanche, A.J.Alix, and D.Dive (1998).
Cloning and expression of an iron-containing superoxide dismutase in the parasitic protist, Trichomonas vaginalis.
  FEMS Microbiol Lett, 161, 115-123.  
9603906 F.Yamakura, H.Taka, T.Fujimura, and K.Murayama (1998).
Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine.
  J Biol Chem, 273, 14085-14089.  
9484232 L.A.MacMillan-Crow, J.P.Crow, and J.A.Thompson (1998).
Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues.
  Biochemistry, 37, 1613-1622.  
9712831 M.M.Whittaker, and J.W.Whittaker (1998).
A glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase.
  J Biol Chem, 273, 22188-22193.  
9537987 Y.Guan, M.J.Hickey, G.E.Borgstahl, R.A.Hallewell, J.R.Lepock, D.O'Connor, Y.Hsieh, H.S.Nick, D.N.Silverman, and J.A.Tainer (1998).
Crystal structure of Y34F mutant human mitochondrial manganese superoxide dismutase and the functional role of tyrosine 34.
  Biochemistry, 37, 4722-4730.
PDB codes: 1ap5 1ap6
9537988 Y.Hsieh, Y.Guan, C.Tu, P.J.Bratt, A.Angerhofer, J.R.Lepock, M.J.Hickey, J.A.Tainer, H.S.Nick, and D.N.Silverman (1998).
Probing the active site of human manganese superoxide dismutase: the role of glutamine 143.
  Biochemistry, 37, 4731-4739.
PDB code: 1qnm
9220980 M.M.Whittaker, and J.W.Whittaker (1997).
Mutagenesis of a proton linkage pathway in Escherichia coli manganese superoxide dismutase.
  Biochemistry, 36, 8923-8931.  
  9385637 P.Stenlund, D.Andersson, and L.A.Tibell (1997).
Subunit interaction in extracellular superoxide dismutase: effects of mutations in the N-terminal domain.
  Protein Sci, 6, 2350-2358.  
9125514 T.Hunter, K.Ikebukuro, W.H.Bannister, J.V.Bannister, and G.J.Hunter (1997).
The conserved residue tyrosine 34 is essential for maximal activity of iron-superoxide dismutase from Escherichia coli.
  Biochemistry, 36, 4925-4933.  
8605177 G.E.Borgstahl, H.E.Parge, M.J.Hickey, M.J.Johnson, M.Boissinot, R.A.Hallewell, J.R.Lepock, D.E.Cabelli, and J.A.Tainer (1996).
Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface.
  Biochemistry, 35, 4287-4297.
PDB code: 1var
8760336 G.Martini, and M.V.Ursini (1996).
A new lease of life for an old enzyme.
  Bioessays, 18, 631-637.  
8787689 H.C.Yen, T.D.Oberley, S.Vichitbandha, Y.S.Ho, and D.K.St Clair (1996).
The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice.
  J Clin Invest, 98, 1253-1260.  
8663465 J.L.Hsu, Y.Hsieh, C.Tu, D.O'Connor, H.S.Nick, and D.N.Silverman (1996).
Catalytic properties of human manganese superoxide dismutase.
  J Biol Chem, 271, 17687-17691.  
8643556 L.M.Carlsson, S.L.Marklund, and T.Edlund (1996).
The rat extracellular superoxide dismutase dimer is converted to a tetramer by the exchange of a single amino acid.
  Proc Natl Acad Sci U S A, 93, 5219-5222.  
8639627 M.M.Whittaker, and J.W.Whittaker (1996).
Low-temperature thermochromism marks a change in coordination for the metal ion in manganese superoxide dismutase.
  Biochemistry, 35, 6762-6770.  
8939754 S.J.Cooper, G.A.Leonard, S.M.McSweeney, A.W.Thompson, J.H.Naismith, S.Qamar, A.Plater, A.Berry, and W.N.Hunter (1996).
The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold.
  Structure, 4, 1303-1315.
PDB code: 1zen
7867628 F.Yamakura, K.Kobayashi, H.Ue, and M.Konno (1995).
The pH-dependent changes of the enzymic activity and spectroscopic properties of iron-substituted manganese superoxide dismutase. A study on the metal-specific activity of Mn-containing superoxide dismutase.
  Eur J Biochem, 227, 700-706.  
7493016 Y.Li, T.T.Huang, E.J.Carlson, S.Melov, P.C.Ursell, J.L.Olson, L.J.Noble, M.P.Yoshimura, C.Berger, P.H.Chan, D.C.Wallace, and C.J.Epstein (1995).
Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase.
  Nat Genet, 11, 376-381.  
8307013 B.Meier, A.P.Sehn, M.E.Schininà, and D.Barra (1994).
In vivo incorporation of copper into the iron-exchangeable and manganese-exchangeable superoxide dismutase from Propionibacterium shermanii. Amino acid sequence and identity of the protein moieties.
  Eur J Biochem, 219, 463-468.  
  7605869 F.Pociot, K.S.Rønningen, R.Bergholdt, T.Lorenzen, J.Johannesen, K.Ye, C.A.Dinarello, and J.Nerup (1994).
Genetic susceptibility markers in Danish patients with type 1 (insulin-dependent) diabetes--evidence for polygenicity in man. Danish Study Group of Diabetes in Childhood.
  Autoimmunity, 19, 169-178.  
  8495200 U.G.Wagner, K.A.Pattridge, M.L.Ludwig, W.C.Stallings, M.M.Werber, C.Oefner, F.Frolow, and J.L.Sussman (1993).
Comparison of the crystal structures of genetically engineered human manganese superoxide dismutase and manganese superoxide dismutase from Thermus thermophilus: differences in dimer-dimer interaction.
  Protein Sci, 2, 814-825.
PDB code: 1msd
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.