PDBsum entry 1mug

Go to PDB code: 
protein ligands links
Hydrolase PDB id
Protein chain
165 a.a. *
SO4 ×2
Waters ×158
* Residue conservation analysis
PDB id:
Name: Hydrolase
Title: G:t/u mismatch-specific DNA glycosylase from e.Coli
Structure: Protein (g:t/u specific DNA glycosylase). Chain: a. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
1.80Å     R-factor:   0.198     R-free:   0.252
Authors: T.E.Barrett,R.Savva,G.Panayotou,T.Brown,T.Barlow,J.Jiricny, L.H.Pearl
Key ref:
T.E.Barrett et al. (1998). Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. Cell, 92, 117-129. PubMed id: 9489705 DOI: 10.1016/S0092-8674(00)80904-6
10-Jul-98     Release date:   15-Jul-98    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P0A9H1  (MUG_ECOLI) -  G/U mismatch-specific DNA glycosylase
168 a.a.
165 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Double-stranded uracil-DNA glycosylase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     metabolic process   4 terms 
  Biochemical function     hydrolase activity     5 terms  


DOI no: 10.1016/S0092-8674(00)80904-6 Cell 92:117-129 (1998)
PubMed id: 9489705  
Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions.
T.E.Barrett, R.Savva, G.Panayotou, T.Barlow, T.Brown, J.Jiricny, L.H.Pearl.
G:U mismatches resulting from deamination of cytosine are the most common promutagenic lesions occurring in DNA. Uracil is removed in a base-excision repair pathway by uracil DNA-glycosylase (UDG), which excises uracil from both single- and double-stranded DNA. Recently, a biochemically distinct family of DNA repair enzymes has been identified, which excises both uracil and thymine, but only from mispairs with guanine. Crystal structures of the mismatch-specific uracil DNA-glycosylase (MUG) from E. coli, and of a DNA complex, reveal a remarkable structural and functional homology to UDGs despite low sequence identity. Details of the MUG structure explain its thymine DNA-glycosylase activity and the specificity for G:U/T mispairs, which derives from direct recognition of guanine on the complementary strand.
  Selected figure(s)  
Figure 5.
Figure 5. Structure of MUG-DNA Complex(a and b) Base pairing of the oligonucleotide 5′-CGCGAGUTCGCG-3′ in the MUG-DNA cocrystals (a). Phosphate groups are shown as (p), Watson-Crick base pairs are indicated by a vertical rule, and mismatches by a colon. The position of the abasic reaction product generated by excision of the uracil base is indicated by an asterisk. Crystallographic 2-fold axes that coincide with dyads in the duplex DNA are indicated. The segment of the continuous nicked duplex shown in (b) is indicated in magenta. (b) Stereo view of the MUG-DNA complex viewed from the major groove of the DNA. The structure of the MUG enzyme is shown as a secondary structure cartoon, with the residues forming the pyrimidine-binding pocket shown explicitly in red and the residues forming the intercalation wedge shown in green.(c) Electron density for the abasic deoxyribose sugar produced by excision of the uracil base. Two solvent molecules hydrogen bonded to the O1′ hydroxyl of the abasic sugar are shown as blue spheres. The electron density is from a 2F[o]-F[c] Fourier map, contoured at 1.2 σ.
Figure 6.
Figure 6. Intercalation and Complementary-Strand Interactions(a) Stereo pair of electron density for the widowed guanine of the G:U mismatch base pair, and the intercalation wedge. Electron density is from a 2F[o]-F[c] Fourier, contoured at 1.0 σ.(b) Details of the interaction between the intercalation wedge and the widowed guanine. The specific hydrogen bonds to the N1 and N2 groups of the guanine are shown as broken yellow rods, other hydrogen bonds as broken blue rods.
  The above figures are reprinted by permission from Cell Press: Cell (1998, 92, 117-129) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21220122 B.Dalhus, M.Forsbring, I.H.Helle, E.S.Vik, R.J.Forstrøm, P.H.Backe, I.Alseth, and M.Bjørås (2011).
Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase.
  Structure, 19, 117-127.
PDB code: 2xhi
21284855 C.Smet-Nocca, J.M.Wieruszeski, H.Léger, S.Eilebrecht, and A.Benecke (2011).
SUMO-1 regulates the conformational dynamics of Thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity.
  BMC Biochem, 12, 4.  
20861000 M.Firczuk, M.Wojciechowski, H.Czapinska, and M.Bochtler (2011).
DNA intercalation without flipping in the specific ThaI-DNA complex.
  Nucleic Acids Res, 39, 744-754.
PDB code: 3ndh
21112870 S.Grippon, Q.Zhao, T.Robinson, J.J.Marshall, R.J.O'Neill, H.Manning, G.Kennedy, C.Dunsby, M.Neil, S.E.Halford, P.M.French, and G.S.Baldwin (2011).
Differential modes of DNA binding by mismatch uracil DNA glycosylase from Escherichia coli: implications for abasic lesion processing and enzyme communication in the base excision repair pathway.
  Nucleic Acids Res, 39, 2593-2603.  
19933279 H.A.Cole, J.M.Tabor-Godwin, and J.J.Hayes (2010).
Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets.
  J Biol Chem, 285, 2876-2885.  
21128175 N.Suzuki, and M.Fukushima (2010).
Simple and rapid enzymatic method for the synthesis of single-strand oligonucleotides containing trifluorothymidine.
  Nucleosides Nucleotides Nucleic Acids, 29, 896-904.  
  20798892 Y.Shimizu, Y.Uchimura, N.Dohmae, H.Saitoh, F.Hanaoka, and K.Sugasawa (2010).
Stimulation of DNA Glycosylase Activities by XPC Protein Complex: Roles of Protein-Protein Interactions.
  J Nucleic Acids, 2010, 0.  
19324873 A.Darwanto, J.A.Theruvathu, J.L.Sowers, D.K.Rogstad, T.Pascal, W.Goddard, and L.C.Sowers (2009).
Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase.
  J Biol Chem, 284, 15835-15846.  
18587051 A.Maiti, M.T.Morgan, E.Pozharski, and A.C.Drohat (2008).
Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition.
  Proc Natl Acad Sci U S A, 105, 8890-8895.
PDB code: 2rba
18423806 G.Xu, M.Herzig, V.Rotrekl, and C.A.Walter (2008).
Base excision repair, aging and health span.
  Mech Ageing Dev, 129, 366-382.  
17410210 A.H.Metz, T.Hollis, and B.F.Eichman (2007).
DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
  EMBO J, 26, 2411-2420.
PDB codes: 2ofi 2ofk
17617640 G.Tamulaitis, M.Zaremba, R.H.Szczepanowski, M.Bochtler, and V.Siksnys (2007).
Nucleotide flipping by restriction enzymes analyzed by 2-aminopurine steady-state fluorescence.
  Nucleic Acids Res, 35, 4792-4799.  
17485252 J.L.Tubbs, A.E.Pegg, and J.A.Tainer (2007).
DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy.
  DNA Repair (Amst), 6, 1100-1115.  
17602166 M.T.Morgan, M.T.Bennett, and A.C.Drohat (2007).
Excision of 5-halogenated uracils by human thymine DNA glycosylase. Robust activity for DNA contexts other than CpG.
  J Biol Chem, 282, 27578-27586.  
17096663 P.Lehoczký, P.J.McHugh, and M.Chovanec (2007).
DNA interstrand cross-link repair in Saccharomyces cerevisiae.
  FEMS Microbiol Rev, 31, 109-133.  
17060459 R.D.Mohan, A.Rao, J.Gagliardi, and M.Tini (2007).
SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment.
  Mol Cell Biol, 27, 229-243.  
16223719 E.Moe, I.Leiros, A.O.Smalås, and S.McSweeney (2006).
The crystal structure of mismatch-specific uracil-DNA glycosylase (MUG) from Deinococcus radiodurans reveals a novel catalytic residue and broad substrate specificity.
  J Biol Chem, 281, 569-577.
PDB codes: 2c2p 2c2q
16984202 M.T.Bennett, M.T.Rodgers, A.S.Hebert, L.E.Ruslander, L.Eisele, and A.C.Drohat (2006).
Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability.
  J Am Chem Soc, 128, 12510-12519.  
16858410 O.Sundheim, C.B.Vågbø, M.Bjørås, M.M.Sousa, V.Talstad, P.A.Aas, F.Drabløs, H.E.Krokan, J.A.Tainer, and G.Slupphaug (2006).
Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage.
  EMBO J, 25, 3389-3397.
PDB code: 2iuw
17115714 R.K.Walker, A.K.McCullough, and R.S.Lloyd (2006).
Uncoupling of nucleotide flipping and DNA bending by the t4 pyrimidine dimer DNA glycosylase.
  Biochemistry, 45, 14192-14200.  
15959518 D.Baba, N.Maita, J.G.Jee, Y.Uchimura, H.Saitoh, K.Sugasawa, F.Hanaoka, H.Tochio, H.Hiroaki, and M.Shirakawa (2005).
Crystal structure of thymine DNA glycosylase conjugated to SUMO-1.
  Nature, 435, 979-982.
PDB code: 1wyw
16041069 I.Leiros, E.Moe, A.O.Smalås, and S.McSweeney (2005).
Structure of the uracil-DNA N-glycosylase (UNG) from Deinococcus radiodurans.
  Acta Crystallogr D Biol Crystallogr, 61, 1049-1056.
PDB code: 2boo
15823533 R.Steinacher, and P.Schär (2005).
Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation.
  Curr Biol, 15, 616-623.  
15499577 B.Hang (2004).
Repair of exocyclic DNA adducts: rings of complexity.
  Bioessays, 26, 1195-1208.  
15274924 D.Daujotyte, S.Serva, G.Vilkaitis, E.Merkiene, C.Venclovas, and S.Klimasauskas (2004).
HhaI DNA methyltransferase uses the protruding Gln237 for active flipping of its target cytosine.
  Structure, 12, 1047-1055.  
15221026 D.S.Daniels, T.T.Woo, K.X.Luu, D.M.Noll, N.D.Clarke, A.E.Pegg, and J.A.Tainer (2004).
DNA binding and nucleotide flipping by the human DNA repair protein AGT.
  Nat Struct Mol Biol, 11, 714-720.
PDB codes: 1t38 1t39
15102448 J.C.Fromme, A.Banerjee, and G.L.Verdine (2004).
DNA glycosylase recognition and catalysis.
  Curr Opin Struct Biol, 14, 43-49.  
14717711 J.M.Gulbis, S.L.Kazmirski, J.Finkelstein, Z.Kelman, M.O'Donnell, and J.Kuriyan (2004).
Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex.
  Eur J Biochem, 271, 439-449.
PDB code: 1em8
15178685 L.Larivière, and S.Moréra (2004).
Structural evidence of a passive base-flipping mechanism for beta-glucosyltransferase.
  J Biol Chem, 279, 34715-34720.
PDB codes: 1sxp 1sxq
15466595 M.Matsubara, T.Tanaka, H.Terato, E.Ohmae, S.Izumi, K.Katayanagi, and H.Ide (2004).
Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase.
  Nucleic Acids Res, 32, 5291-5302.  
15096615 S.E.Bennett, C.Y.Chen, and D.W.Mosbaugh (2004).
Escherichia coli nucleoside diphosphate kinase does not act as a uracil-processing DNA repair nuclease.
  Proc Natl Acad Sci U S A, 101, 6391-6396.  
15169780 T.Torizawa, T.Ueda, S.Kuramitsu, K.Hitomi, T.Todo, S.Iwai, K.Morikawa, and I.Shimada (2004).
Investigation of the cyclobutane pyrimidine dimer (CPD) photolyase DNA recognition mechanism by NMR analyses.
  J Biol Chem, 279, 32950-32956.  
14661275 A.David, N.Bleimling, C.Beuck, J.M.Lehn, E.Weinhold, and M.P.Teulade-Fichou (2003).
DNA mismatch-specific base flipping by a bisacridine macrocycle.
  Chembiochem, 4, 1326-1331.  
12840008 J.C.Fromme, and G.L.Verdine (2003).
Structure of a trapped endonuclease III-DNA covalent intermediate.
  EMBO J, 22, 3461-3471.
PDB codes: 1orn 1orp 1p59
12820976 J.E.Wibley, T.R.Waters, K.Haushalter, G.L.Verdine, and L.H.Pearl (2003).
Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1.
  Mol Cell, 11, 1647-1659.
PDB codes: 1oe4 1oe5 1oe6
12626704 K.A.Bunting, S.M.Roe, A.Headley, T.Brown, R.Savva, and L.H.Pearl (2003).
Crystal structure of the Escherichia coli dcm very-short-patch DNA repair endonuclease bound to its reaction product-site in a DNA superhelix.
  Nucleic Acids Res, 31, 1633-1639.
PDB code: 1odg
12493755 M.Abu, and T.R.Waters (2003).
The main role of human thymine-DNA glycosylase is removal of thymine produced by deamination of 5-methylcytosine and not removal of ethenocytosine.
  J Biol Chem, 278, 8739-8744.  
12668677 R.J.O'Neill, O.V.Vorob'eva, H.Shahbakhti, E.Zmuda, A.S.Bhagwat, and G.S.Baldwin (2003).
Mismatch uracil glycosylase from Escherichia coli: a general mismatch or a specific DNA glycosylase?
  J Biol Chem, 278, 20526-20532.  
12711670 U.Hardeland, M.Bentele, J.Jiricny, and P.Schär (2003).
The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs.
  Nucleic Acids Res, 31, 2261-2271.  
12505994 Y.Shimizu, S.Iwai, F.Hanaoka, and K.Sugasawa (2003).
Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase.
  EMBO J, 22, 164-173.  
12065430 A.A.Sartori, S.Fitz-Gibbon, H.Yang, J.H.Miller, and J.Jiricny (2002).
A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site.
  EMBO J, 21, 3182-3191.  
11841206 B.Hang, G.Downing, A.B.Guliaev, and B.Singer (2002).
Novel activity of Escherichia coli mismatch uracil-DNA glycosylase (Mug) excising 8-(hydroxymethyl)-3,N4-ethenocytosine, a potential product resulting from glycidaldehyde reaction.
  Biochemistry, 41, 2158-2165.  
12057763 D.O.Zharkov, and A.P.Grollman (2002).
Combining structural and bioinformatics methods for the analysis of functionally important residues in DNA glycosylases.
  Free Radic Biol Med, 32, 1254-1263.  
11847126 D.O.Zharkov, G.Golan, R.Gilboa, A.S.Fernandes, S.E.Gerchman, J.H.Kycia, R.A.Rieger, A.P.Grollman, and G.Shoham (2002).
Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate.
  EMBO J, 21, 789-800.
PDB codes: 1k3w 1k3x
11877410 J.A.Hinks, M.C.Evans, Y.De Miguel, A.A.Sartori, J.Jiricny, and L.H.Pearl (2002).
An iron-sulfur cluster in the family 4 uracil-DNA glycosylases.
  J Biol Chem, 277, 16936-16940.  
12198481 K.S.Yan, and M.M.Zhou (2002).
TAGging the target for damage control.
  Nat Struct Biol, 9, 638-640.  
12208357 K.Sakano, S.Oikawa, Y.Hiraku, and S.Kawanishi (2002).
Metabolism of carcinogenic urethane to nitric oxide is involved in oxidative DNA damage.
  Free Radic Biol Med, 33, 703-714.  
12065399 L.Serre, K.Pereira de Jésus, S.Boiteux, C.Zelwer, and B.Castaing (2002).
Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA.
  EMBO J, 21, 2854-2865.
PDB code: 1kfv
12016206 M.Saparbaev, S.Langouët, C.V.Privezentzev, F.P.Guengerich, H.Cai, R.H.Elder, and J.Laval (2002).
1,N(2)-ethenoguanine, a mutagenic DNA adduct, is a primary substrate of Escherichia coli mismatch-specific uracil-DNA glycosylase and human alkylpurine-DNA-N-glycosylase.
  J Biol Chem, 277, 26987-26993.  
12037293 N.E.Chayen, and E.Saridakis (2002).
Protein crystallization for genomics: towards high-throughput optimization techniques.
  Acta Crystallogr D Biol Crystallogr, 58, 921-927.  
12136091 P.Handa, N.Acharya, and U.Varshney (2002).
Effects of mutations at tyrosine 66 and asparagine 123 in the active site pocket of Escherichia coli uracil DNA glycosylase on uracil excision from synthetic DNA oligomers: evidence for the occurrence of long-range interactions between the enzyme and substrate.
  Nucleic Acids Res, 30, 3086-3095.  
11889051 U.Hardeland, R.Steinacher, J.Jiricny, and P.Schär (2002).
Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover.
  EMBO J, 21, 1456-1464.  
12000829 V.Starkuviene, and H.J.Fritz (2002).
A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus.
  Nucleic Acids Res, 30, 2097-2102.  
12361800 Y.W.Kow (2002).
Repair of deaminated bases in DNA.
  Free Radic Biol Med, 33, 886-893.  
11223884 O.D.Schärer, and J.Jiricny (2001).
Recent progress in the biology, chemistry and structural biology of DNA glycosylases.
  Bioessays, 23, 270-281.  
11557818 S.R.Bellamy, and G.S.Baldwin (2001).
A kinetic analysis of substrate recognition by uracil-DNA glycosylase from herpes simplex virus type 1.
  Nucleic Acids Res, 29, 3857-3863.  
11557810 X.Cheng, and R.J.Roberts (2001).
AdoMet-dependent methylation, DNA methyltransferases and base flipping.
  Nucleic Acids Res, 29, 3784-3795.  
11106395 A.Y.Lau, M.D.Wyatt, B.J.Glassner, L.D.Samson, and T.Ellenberger (2000).
Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG.
  Proc Natl Acad Sci U S A, 97, 13573-13578.
PDB codes: 1ewn 1f4r 1f6o
10671447 H.Yang, S.Fitz-Gibbon, E.M.Marcotte, J.H.Tai, E.C.Hyman, and J.H.Miller (2000).
Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum.
  J Bacteriol, 182, 1272-1279.  
10956012 J.S.Sung, and D.W.Mosbaugh (2000).
Escherichia coli double-strand uracil-DNA glycosylase: involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV.
  Biochemistry, 39, 10224-10235.  
  11178247 L.Aravind, and E.V.Koonin (2000).
The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates.
  Genome Biol, 1, RESEARCH0007.  
10677220 N.Guibourt, B.Castaing, P.A.Van Der Kemp, and S.Boiteux (2000).
Catalytic and DNA binding properties of the ogg1 protein of Saccharomyces cerevisiae: comparison between the wild type and the K241R and K241Q active-site mutant proteins.
  Biochemistry, 39, 1716-1724.  
12760037 S.E.Tsutakawa, and K.Morikawa (2000).
New recognition mode for a TG mismatch: the atomic structure of a very short patch repair endonuclease-DNA complex.
  Cold Spring Harb Symp Quant Biol, 65, 233-239.  
10675345 T.Hollis, Y.Ichikawa, and T.Ellenberger (2000).
DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA.
  EMBO J, 19, 758-766.
PDB code: 1diz
12760036 W.Yang, M.S.Junop, C.Ban, G.Obmolova, and P.Hsieh (2000).
DNA mismatch repair: from structure to mechanism.
  Cold Spring Harb Symp Quant Biol, 65, 225-232.  
10872450 A.K.McCullough, M.L.Dodson, and R.S.Lloyd (1999).
Initiation of base excision repair: glycosylase mechanisms and structures.
  Annu Rev Biochem, 68, 255-285.  
10410797 C.D.Mol, S.S.Parikh, C.D.Putnam, T.P.Lo, and J.A.Tainer (1999).
DNA repair mechanisms for the recognition and removal of damaged DNA bases.
  Annu Rev Biophys Biomol Struct, 28, 101-128.  
10611648 D.G.Myszka (1999).
Survey of the 1998 optical biosensor literature.
  J Mol Recognit, 12, 390-408.  
10458614 D.J.Hosfield, Y.Guan, B.J.Haas, R.P.Cunningham, and J.A.Tainer (1999).
Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis.
  Cell, 98, 397-408.
PDB codes: 1qtw 1qum
10518532 D.M.van Aalten, D.A.Erlanson, G.L.Verdine, and L.Joshua-Tor (1999).
A structural snapshot of base-pair opening in DNA.
  Proc Natl Acad Sci U S A, 96, 11809-11814.
PDB code: 1cw9
9893991 J.T.Stivers, K.W.Pankiewicz, and K.A.Watanabe (1999).
Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase.
  Biochemistry, 38, 952-963.  
10074426 K.A.Haushalter, M.W.Todd Stukenberg, M.W.Kirschner, and G.L.Verdine (1999).
Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors.
  Curr Biol, 9, 174-185.  
  10542179 L.M.Posnick, and L.D.Samson (1999).
Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli.
  J Bacteriol, 181, 6763-6771.  
10430892 M.A.Greagg, M.J.Fogg, G.Panayotou, S.J.Evans, B.A.Connolly, and L.H.Pearl (1999).
A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil.
  Proc Natl Acad Sci U S A, 96, 9045-9050.  
10339434 M.Sandigursky, and W.A.Franklin (1999).
Thermostable uracil-DNA glycosylase from Thermotoga maritima a member of a novel class of DNA repair enzymes.
  Curr Biol, 9, 531-534.  
10413495 N.Luo, E.Mehler, and R.Osman (1999).
Specificity and catalysis of uracil DNA glycosylase. A molecular dynamics study of reactant and product complexes with DNA.
  Biochemistry, 38, 9209-9220.  
10047578 S.S.Parikh, C.D.Mol, D.J.Hosfield, and J.A.Tainer (1999).
Envisioning the molecular choreography of DNA base excision repair.
  Curr Opin Struct Biol, 9, 37-47.  
10581234 T.E.Barrett, O.D.Schärer, R.Savva, T.Brown, J.Jiricny, G.L.Verdine, and L.H.Pearl (1999).
Crystal structure of a thwarted mismatch glycosylase DNA repair complex.
  EMBO J, 18, 6599-6609.
PDB code: 1mwj
10583946 T.Lindahl, and R.D.Wood (1999).
Quality control by DNA repair.
  Science, 286, 1897-1905.  
9867812 T.R.Waters, P.Gallinari, J.Jiricny, and P.F.Swann (1999).
Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1.
  J Biol Chem, 274, 67-74.  
9751641 D.P.Hornby, and G.C.Ford (1998).
Protein-mediated base flipping.
  Curr Opin Biotechnol, 9, 354-358.  
9783745 M.O'Gara, J.R.Horton, R.J.Roberts, and X.Cheng (1998).
Structures of HhaI methyltransferase complexed with substrates containing mismatches at the target base.
  Nat Struct Biol, 5, 872-877.
PDB codes: 7mht 8mht 9mht
9733786 R.J.Sanderson, and D.W.Mosbaugh (1998).
Fidelity and mutational specificity of uracil-initiated base excision DNA repair synthesis in human glioblastoma cell extracts.
  J Biol Chem, 273, 24822-24831.  
9724657 S.S.Parikh, C.D.Mol, G.Slupphaug, S.Bharati, H.E.Krokan, and J.A.Tainer (1998).
Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA.
  EMBO J, 17, 5214-5226.
PDB codes: 1akz 1ssp 2ssp
9694815 S.Um, M.Harbers, A.Benecke, B.Pierrat, R.Losson, and P.Chambon (1998).
Retinoic acid receptors interact physically and functionally with the T:G mismatch-specific thymine-DNA glycosylase.
  J Biol Chem, 273, 20728-20736.  
9699633 T.E.Barrett, R.Savva, T.Barlow, T.Brown, J.Jiricny, and L.H.Pearl (1998).
Structure of a DNA base-excision product resembling a cisplatin inter-strand adduct.
  Nat Struct Biol, 5, 697-701.
PDB code: 1mtl
9685338 T.R.Waters, and P.F.Swann (1998).
Kinetics of the action of thymine DNA glycosylase.
  J Biol Chem, 273, 20007-20014.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.