PDBsum entry 1mro

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Methanogenesis PDB id
Protein chains
548 a.a. *
442 a.a. *
247 a.a. *
F43 ×2
TP7 ×2
COM ×2
GOL ×4
_NA ×2
Waters ×1713
* Residue conservation analysis
PDB id:
Name: Methanogenesis
Title: Methyl-coenzyme m reductase
Structure: Methyl-coenzyme m reductase. Chain: a, d. Other_details: mcr-ox-silent state, enzyme-substrate comple methyl-coenzyme m reductase. Chain: b, e. Other_details: mcr-ox-silent state, enzyme-substrate comple methyl-coenzyme m reductase. Chain: c, f. Other_details: mcr-ox-silent state, enzyme-substrate comple
Source: Methanothermobacter marburgensis str. Organism_taxid: 79929. Strain: marburg. Cellular_location: cytoplasm. Cellular_location: cytoplasm
Biol. unit: Hexamer (from PDB file)
1.16Å     R-factor:   0.197     R-free:   0.207
Authors: U.Ermler,W.Grabarse
Key ref:
U.Ermler et al. (1997). Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science, 278, 1457-1462. PubMed id: 9367957 DOI: 10.1126/science.278.5342.1457
01-Oct-97     Release date:   11-Nov-98    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P11558  (MCRA_METTM) -  Methyl-coenzyme M reductase I subunit alpha
550 a.a.
548 a.a.*
Protein chains
Pfam   ArchSchema ?
P11560  (MCRB_METTM) -  Methyl-coenzyme M reductase I subunit beta
443 a.a.
442 a.a.
Protein chains
Pfam   ArchSchema ?
P11562  (MCRG_METTM) -  Methyl-coenzyme M reductase I subunit gamma
249 a.a.
247 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 5 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D, E, F: E.C.  - Coenzyme-B sulfoethylthiotransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

Methane Biosynthesis
      Reaction: Methyl-CoM + CoB = CoM-S-S-CoB + methane
+ CoB
Bound ligand (Het Group name = TP7)
matches with 75.00% similarity
+ methane
      Cofactor: Coenzyme F430
Coenzyme F430
Bound ligand (Het Group name = F43) matches with 89.23% similarity
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     methanogenesis   1 term 
  Biochemical function     transferase activity     3 terms  


DOI no: 10.1126/science.278.5342.1457 Science 278:1457-1462 (1997)
PubMed id: 9367957  
Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation.
U.Ermler, W.Grabarse, S.Shima, M.Goubeaud, R.K.Thauer.
Methyl-coenzyme M reductase (MCR), the enzyme responsible for the microbial formation of methane, is a 300-kilodalton protein organized as a hexamer in an alpha2beta2gamma2 arrangement. The crystal structure of the enzyme from Methanobacterium thermoautotrophicum, determined at 1.45 angstrom resolution for the inactive enzyme state MCRox1-silent, reveals that two molecules of the nickel porphinoid coenzyme F430 are embedded between the subunits alpha, alpha', beta, and gamma and alpha', alpha, beta', and gamma', forming two identical active sites. Each site is accessible for the substrate methyl-coenzyme M through a narrow channel locked after binding of the second substrate coenzyme B. Together with a second structurally characterized enzyme state (MCRsilent) containing the heterodisulfide of coenzymes M and B, a reaction mechanism is proposed that uses a radical intermediate and a nickel organic compound.
  Selected figure(s)  
Figure 3.
Fig. 3. Structure of coenzyme F[430] (viewed toward the front face) and the final 2 F[obs] F[calc] electron density at 1.45 Å resolution contoured at the 2 level. The quality of the electron density is sufficiently high to determine the exact configuration of the^ coenzyme that is in agreement with previous results (5). The^ propionate substituents of rings A, B, and C are perpendicular to the tetrapyrrole plane pointing toward the apex, whereas the^ lactam ring is directed toward the mouth of the channel (Fig. 2B). The six-membered carbocyclic ring joined with ring D, and^ the protruding acetate and acetamide substituents lie approximately in the tetrapyrrole ring plane. Figures 3 and 5 were produced^ with SETOR (48).
Figure 4.
Fig. 4. (A) The active site region of the MCR[ox1-silent] structure. The binding positions of the coenzymes suggest the active^ site between the nickel of coenzyme F[430] and the sulfur atom of^ CoB. The active site is coated mostly by nonpolar and aromatic^ residues. Five mutually contacting phenylalanine and tyrosine^ side chains are arranged as ring forming a tunnel. (B) The active site region of the MCR[silent] structure. Compared with the MCR[ox1-silent] structure, CoM has moved through the tunnel to form with CoB a heterodisulfide, the oxidation product of the^ reaction. The sulfonate moiety of CoM lost its interactions to the protein matrix and is coordinated to the Ni atom.
  The above figures are reprinted by permission from the AAAs: Science (1997, 278, 1457-1462) copyright 1997.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19886702 H.Xiao, K.El Bissati, P.Verdier-Pinard, B.Burd, H.Zhang, K.Kim, A.Fiser, R.H.Angeletti, and L.M.Weiss (2010).
Post-translational modifications to Toxoplasma gondii alpha- and beta-tubulins include novel C-terminal methylation.
  J Proteome Res, 9, 359-372.  
20528692 J.G.Ferry (2010).
How to make a living by exhaling methane.
  Annu Rev Microbiol, 64, 453-473.  
20333421 K.C.Ryan, O.E.Johnson, D.E.Cabelli, T.C.Brunold, and M.J.Maroney (2010).
Nickel superoxide dismutase: structural and functional roles of Cys2 and Cys6.
  J Biol Inorg Chem, 15, 795-807.  
20182522 K.Milferstedt, N.D.Youngblut, and R.J.Whitaker (2010).
Spatial structure and persistence of methanogen populations in humic bog lakes.
  ISME J, 4, 764-776.  
20179860 M.Ishida, Y.Naruta, and F.Tani (2010).
Copper(II) and nickel(II) hexafluorophosphate complexes derived from a monoanionic porphyrin analogue: solvato- and thermochromism of the Ni complexes by spin-interconversion.
  Dalton Trans, 39, 2651-2659.  
20233261 M.Mitsumori, S.Nakagawa, H.Matsui, T.Shinkai, and A.Takenaka (2010).
Phylogenetic diversity of gene sequences isolated from the rumen as analysed using a self-organizing map (SOM).
  J Appl Microbiol, 109, 763-770.  
20333422 O.E.Johnson, K.C.Ryan, M.J.Maroney, and T.C.Brunold (2010).
Spectroscopic and computational investigation of three Cys-to-Ser mutants of nickel superoxide dismutase: insight into the roles played by the Cys2 and Cys6 active-site residues.
  J Biol Inorg Chem, 15, 777-793.  
19557264 H.W.Jiang, Q.Y.Chen, J.C.Xiao, and Y.C.Gu (2009).
The oxidation of Ni(II) N-confused porphyrins (NCPs) with azo radical initiators and an unexpected intramolecular nucleophilic substitution reaction via a proposed Ni(III) NCP intermediate.
  Chem Commun (Camb), (), 3732-3734.  
19675641 J.C.Fontecilla-Camps, P.Amara, C.Cavazza, Y.Nicolet, and A.Volbeda (2009).
Structure-function relationships of anaerobic gas-processing metalloenzymes.
  Nature, 460, 814-822.  
19243132 R.Sarangi, M.Dey, and S.W.Ragsdale (2009).
Geometric and electronic structures of the Ni(I) and methyl-Ni(III) intermediates of methyl-coenzyme M reductase.
  Biochemistry, 48, 3146-3156.  
19363030 S.W.Ragsdale (2009).
Nickel-based Enzyme Systems.
  J Biol Chem, 284, 18571-18575.  
19208259 Y.Zhang, D.A.Rodionov, M.S.Gelfand, and V.N.Gladyshev (2009).
Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization.
  BMC Genomics, 10, 78.  
18772284 A.M.Krishnakumar, D.Sliwa, J.A.Endrizzi, E.S.Boyd, S.A.Ensign, and J.W.Peters (2008).
Getting a handle on the role of coenzyme M in alkene metabolism.
  Microbiol Mol Biol Rev, 72, 445-456.  
  18323597 C.Mueller-Dieckmann, S.Kernstock, J.Mueller-Dieckmann, M.S.Weiss, and F.Koch-Nolte (2008).
Structure of mouse ADP-ribosylhydrolase 3 (mARH3).
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 156-162.
PDB code: 2qty
18712421 D.Hinderberger, S.Ebner, S.Mayr, B.Jaun, M.Reiher, M.Goenrich, R.K.Thauer, and J.Harmer (2008).
Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase.
  J Biol Inorg Chem, 13, 1275-1289.  
18226248 E.J.Milner-White, and M.J.Russell (2008).
Predicting the conformations of peptides and proteins in early evolution. A review article submitted to Biology Direct.
  Biol Direct, 3, 3.  
18575848 E.Oelgeschläger, and M.Rother (2008).
Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea.
  Arch Microbiol, 190, 257-269.  
18378593 J.G.Ferry, and D.J.Lessner (2008).
Methanogenesis in marine sediments.
  Ann N Y Acad Sci, 1125, 147-157.  
18177370 J.M.Smith, S.J.Green, C.A.Kelley, L.Prufert-Bebout, and B.M.Bebout (2008).
Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat.
  Environ Microbiol, 10, 386-394.  
18321966 M.J.Kim, S.U.Huh, B.K.Ham, and K.H.Paek (2008).
A novel methyltransferase methylates Cucumber mosaic virus 1a protein and promotes systemic spread.
  J Virol, 82, 4823-4833.  
18096853 R.K.Thauer, and S.Shima (2008).
Methane as fuel for anaerobic microorganisms.
  Ann N Y Acad Sci, 1125, 158-170.  
18765671 R.M.Drevland, Y.Jia, D.R.Palmer, and D.E.Graham (2008).
Methanogen homoaconitase catalyzes both hydrolyase reactions in coenzyme B biosynthesis.
  J Biol Chem, 283, 28888-28896.  
17394648 B.Gao, and R.S.Gupta (2007).
Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis.
  BMC Genomics, 8, 86.  
17690920 D.I.Kern, M.Goenrich, B.Jaun, R.K.Thauer, J.Harmer, and D.Hinderberger (2007).
Two sub-states of the red2 state of methyl-coenzyme M reductase revealed by high-field EPR spectroscopy.
  J Biol Inorg Chem, 12, 1097-1105.  
17725644 J.Kahnt, B.Buchenau, F.Mahlert, M.Krüger, S.Shima, and R.K.Thauer (2007).
Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea.
  FEBS J, 274, 4913-4921.  
17372351 K.Fukuyama, and T.Okada (2007).
Structures of cyanide, nitric oxide and hydroxylamine complexes of Arthromyces ramosusperoxidase at 100 K refined to 1.3 A resolution: coordination geometries of the ligands to the haem iron.
  Acta Crystallogr D Biol Crystallogr, 63, 472-477.
PDB codes: 2e39 2e3a 2e3b
17949432 S.E.Denman, N.W.Tomkins, and C.S.McSweeney (2007).
Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane.
  FEMS Microbiol Ecol, 62, 313-322.  
17716738 S.W.Ragsdale (2007).
Nickel and the carbon cycle.
  J Inorg Biochem, 101, 1657-1666.  
17255002 W.Martin, and M.J.Russell (2007).
On the origin of biochemistry at an alkaline hydrothermal vent.
  Philos Trans R Soc Lond B Biol Sci, 362, 1887-1925.  
16639771 D.Hinderberger, R.P.Piskorski, M.Goenrich, R.K.Thauer, A.Schweiger, J.Harmer, and B.Jaun (2006).
A nickel-alkyl bond in an inactivated state of the enzyme catalyzing methane formation.
  Angew Chem Int Ed Engl, 45, 3602-3607.  
17002292 M.Dey, R.C.Kunz, K.M.Van Heuvelen, J.L.Craft, Y.C.Horng, Q.Tang, D.F.Bocian, S.J.George, T.C.Brunold, and S.W.Ragsdale (2006).
Spectroscopic and computational studies of reduction of the metal versus the tetrapyrrole ring of coenzyme F430 from methyl-coenzyme M reductase.
  Biochemistry, 45, 11915-11933.  
16391725 M.O.Senge (2006).
Exercises in molecular gymnastics--bending, stretching and twisting porphyrins.
  Chem Commun (Camb), (), 243-256.  
16385054 W.F.Fricke, H.Seedorf, A.Henne, M.Krüer, H.Liesegang, R.Hedderich, G.Gottschalk, and R.K.Thauer (2006).
The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis.
  J Bacteriol, 188, 642-658.  
16148304 J.Eichler, and M.W.Adams (2005).
Posttranslational protein modification in Archaea.
  Microbiol Mol Biol Rev, 69, 393-425.  
15846525 M.Goenrich, E.C.Duin, F.Mahlert, and R.K.Thauer (2005).
Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B.
  J Biol Inorg Chem, 10, 333-342.  
15643942 O.Nercessian, N.Bienvenu, D.Moreira, D.Prieur, and C.Jeanthon (2005).
Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments.
  Environ Microbiol, 7, 118-132.  
16242993 S.Shima, and R.K.Thauer (2005).
Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea.
  Curr Opin Microbiol, 8, 643-648.  
16234924 U.Ermler (2005).
On the mechanism of methyl-coenzyme M reductase.
  Dalton Trans, (), 3451-3458.  
16025171 X.Ottenwaelder, A.Aukauloo, Y.Journaux, R.Carrasco, J.Cano, B.Cervera, I.Castro, S.Curreli, M.C.Muñoz, A.L.Roselló, B.Soto, and R.Ruiz-García (2005).
Synthesis, structure, spectroscopy and redox chemistry of square-planar nickel(II) complexes with tetradentate o-phenylenedioxamidates and related ligands.
  Dalton Trans, (), 2516-2526.  
15173586 J.Wuerges, J.W.Lee, Y.I.Yim, H.S.Yim, S.O.Kang, and K.Djinovic Carugo (2004).
Crystal structure of nickel-containing superoxide dismutase reveals another type of active site.
  Proc Natl Acad Sci U S A, 101, 8569-8574.
PDB codes: 1q0d 1q0f 1q0g 1q0k 1q0m
14766537 L.P.Wackett, A.G.Dodge, and L.B.Ellis (2004).
Microbial genomics and the periodic table.
  Appl Environ Microbiol, 70, 647-655.  
15287871 N.Tatsuoka, N.Mohammed, M.Mitsumori, K.Hara, M.Kurihara, and H.Itabashi (2004).
Phylogenetic analysis of methyl coenzyme-M reductase detected from the bovine rumen.
  Lett Appl Microbiol, 39, 257-260.  
15300829 S.J.Kwon, R.Petri, A.L.DeBoer, and C.Schmidt-Dannert (2004).
A high-throughput screen for porphyrin metal chelatases: application to the directed evolution of ferrochelatases for metalloporphyrin biosynthesis.
  Chembiochem, 5, 1069-1074.  
12524532 P.E.Carrington, P.T.Chivers, F.Al-Mjeni, R.T.Sauer, and M.J.Maroney (2003).
Nickel coordination is regulated by the DNA-bound state of NikR.
  Nat Struct Biol, 10, 126-130.  
12524213 S.A.Ensign, and J.R.Allen (2003).
Aliphatic epoxide carboxylation.
  Annu Rev Biochem, 72, 55-76.  
12829270 S.B.Mulrooney, and R.P.Hausinger (2003).
Nickel uptake and utilization by microorganisms.
  FEMS Microbiol Rev, 27, 239-261.  
12649324 S.J.Chiou, C.G.Riordan, and A.L.Rheingold (2003).
Synthetic modeling of zinc thiolates: quantitative assessment of hydrogen bonding in modulating sulfur alkylation rates.
  Proc Natl Acad Sci U S A, 100, 3695-3700.  
12957937 S.J.Hallam, P.R.Girguis, C.M.Preston, P.M.Richardson, and E.F.DeLong (2003).
Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea.
  Appl Environ Microbiol, 69, 5483-5491.  
11849552 L.López-Maury, M.García-Domínguez, F.J.Florencio, and J.C.Reyes (2002).
A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803.
  Mol Microbiol, 43, 247-256.  
11738187 A.Ghosh, T.Wondimagegn, and H.Ryeng (2001).
Deconstructing F(430): quantum chemical perspectives of biological methanogenesis.
  Curr Opin Chem Biol, 5, 744-750.  
11133460 C.McAnulla, C.A.Woodall, I.R.McDonald, A.Studer, S.Vuilleumier, T.Leisinger, and J.C.Murrell (2001).
Chloromethane utilization gene cluster from Hyphomicrobium chloromethanicum strain CM2(T) and development of functional gene probes to detect halomethane-degrading bacteria.
  Appl Environ Microbiol, 67, 307-316.  
12448978 J.F.Banfield, J.W.Moreau, C.S.Chan, S.A.Welch, and B.Little (2001).
Mineralogical biosignatures and the search for life on Mars.
  Astrobiology, 1, 447-465.  
11544359 R.C.Fahey (2001).
Novel thiols of prokaryotes.
  Annu Rev Microbiol, 55, 333-356.  
11321536 T.Lueders, K.J.Chin, R.Conrad, and M.Friedrich (2001).
Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage.
  Environ Microbiol, 3, 194-204.  
10971575 H.Beinert (2000).
A tribute to sulfur.
  Eur J Biochem, 267, 5657-5664.  
10903941 N.M.Okeley, and W.A.van der Donk (2000).
Novel cofactors via post-translational modifications of enzyme active sites.
  Chem Biol, 7, R159-R171.  
9914496 J.Brodersen, S.Bäumer, H.J.Abken, G.Gottschalk, and U.Deppenmeier (1999).
Inhibition of membrane-bound electron transport of the methanogenic archaeon Methanosarcina mazei Gö1 by diphenyleneiodonium.
  Eur J Biochem, 259, 218-224.  
10077852 J.G.Ferry (1999).
Enzymology of one-carbon metabolism in methanogenic pathways.
  FEMS Microbiol Rev, 23, 13-38.  
10411892 J.R.Allen, D.D.Clark, J.G.Krum, and S.A.Ensign (1999).
A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation.
  Proc Natl Acad Sci U S A, 96, 8432-8437.  
10226043 M.J.Maroney (1999).
Structure/function relationships in nickel metallobiochemistry.
  Curr Opin Chem Biol, 3, 188-199.  
10090763 S.B.Choudhury, J.W.Lee, G.Davidson, Y.I.Yim, K.Bose, M.L.Sharma, S.O.Kang, D.E.Cabelli, and M.J.Maroney (1999).
Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase.
  Biochemistry, 38, 3744-3752.  
10200311 T.Vannelli, M.Messmer, A.Studer, S.Vuilleumier, and T.Leisinger (1999).
A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane.
  Proc Natl Acad Sci U S A, 96, 4615-4620.  
9627961 D.Sperling, U.Kappler, A.Wynen, C.Dahl, and H.G.Trüper (1998).
Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases.
  FEMS Microbiol Lett, 162, 257-264.  
9667931 S.W.Ragsdale (1998).
Nickel biochemistry.
  Curr Opin Chem Biol, 2, 208-215.  
9914255 U.Ermler, W.Grabarse, S.Shima, M.Goubeaud, and R.K.Thauer (1998).
Active sites of transition-metal enzymes with a focus on nickel.
  Curr Opin Struct Biol, 8, 749-758.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.