spacer
spacer

PDBsum entry 1mpg

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase PDB id
1mpg

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
282 a.a. *
Ligands
GOL ×2
Waters ×334
* Residue conservation analysis
PDB id:
1mpg
Name: Hydrolase
Title: 3-methyladenine DNA glycosylase ii from escherichia coli
Structure: 3-methyladenine DNA glycosylase ii. Chain: a, b. Synonym: alka. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Cellular_location: cytoplasm. Gene: alka. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.80Å     R-factor:   0.194     R-free:   0.247
Authors: J.Labahn,O.D.Schaerer,A.Long,K.Ezaz-Nikpay,G.L.Verdine, T.E.Ellenberger
Key ref:
J.Labahn et al. (1996). Structural basis for the excision repair of alkylation-damaged DNA. Cell, 86, 321-329. PubMed id: 8706136 DOI: 10.1016/S0092-8674(00)80103-8
Date:
28-Oct-97     Release date:   28-Jan-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P04395  (3MG2_ECOLI) -  DNA-3-methyladenine glycosylase 2 from Escherichia coli (strain K12)
Seq:
Struc:
282 a.a.
282 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.2.2.21  - DNA-3-methyladenine glycosylase Ii.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of alkylated DNA, releasing 3-methyladenine, 3-methylguanine, 7-methylguanine, and 7-methyladenine.

 

 
DOI no: 10.1016/S0092-8674(00)80103-8 Cell 86:321-329 (1996)
PubMed id: 8706136  
 
 
Structural basis for the excision repair of alkylation-damaged DNA.
J.Labahn, O.D.Schärer, A.Long, K.Ezaz-Nikpay, G.L.Verdine, T.E.Ellenberger.
 
  ABSTRACT  
 
Base-excision DNA repair proteins that target alkylation damage act on a variety of seemingly dissimilar adducts, yet fail to recognize other closely related lesions. The 1.8 A crystal structure of the monofunctional DNA glycosylase AlkA (E. coli 3-methyladenine-DNA glycosylase II) reveals a large hydrophobic cleft unusually rich in aromatic residues. An Asp residue projecting into this cleft is essential for catalysis, and it governs binding specificity for mechanism-based inhibitors. We propose that AlkA recognizes electron-deficient methylated bases through pi-donor/acceptor interactions involving the electron-rich aromatic cleft. Remarkably, AlkA is similar in fold and active site location to the bifunctional glycosylase/lyase endonuclease III, suggesting the two may employ fundamentally related mechanisms for base excision.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Overall Shape and Domain Structure of AlkA(A and B) Course of the AlkA polypeptide chain, with elements of secondary structure assigned and colored accordingly (blue = β sheet, red/orange = α helix, WHITE = nonrepetitive elements). The arrow in (A) shows the location of the proposed enzyme active site. The view in (B) is related to that in (A) by rotation of vert, similar 180°.(C) The AlkA protein consists of three domains: an Image -terminal mixed α-β structure (Domain 1, blue); a central seven-helix bundle (Domain 2, red; αD through αJ), and a C-terminal domain of four α helices (Domain 3, yellow; αC and αK through αM). A paucity of intersubunit contacts allows some movement of domain 3 with respect to the rest of the protein. The conserved helix-hairpin-helix motif, consisting of helices αI and αJ and the intervening β turn, is located on one side of this interdomain cleft.(D) The solvent-accessible surface of AlkA, colored according to electrostatic potential (blue, positively charged; red, negatively charged), reveals a cleft at the junction of domains 2 and 3, which is unusually rich in aromatic residues. Jutting into the cleft is the catalytically essential residue Asp-238. The neighboring Asp residue at position 237, which lies at the periphery of the aromatic cleft, is not essential for glycosylase activity. A number of lysines and arginines (blue), which could potentially interact with DNA backbone phosphates, decorate the protein surface around the aromatic cleft. This figure was created using the program GRASP ([33]).
Figure 4.
Figure 4. Detail of the Proposed Active Site of the AlkA ProteinThe cleft, viewed along the direction of the arrow in Figure 3D, is rich in electron-donating aromatic side chains, which are well suited to recognize electron-deficient methylated bases through π–donor/acceptor interactions. The catalytically essential Asp-238 (green) lies at the bottom of the cleft, where it is poised to participate in the reaction chemistry, and to interact with mechanism-based oligonucleotide inhibitors.
 
  The above figures are reprinted by permission from Cell Press: Cell (1996, 86, 321-329) copyright 1996.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20974931 Y.G.Mok, R.Uzawa, J.Lee, G.M.Weiner, B.F.Eichman, R.L.Fischer, and J.H.Huh (2010).
Domain structure of the DEMETER 5-methylcytosine DNA glycosylase.
  Proc Natl Acad Sci U S A, 107, 19225-19230.  
19446526 F.Faucher, S.Duclos, V.Bandaru, S.S.Wallace, and S.Doublié (2009).
Crystal structures of two archaeal 8-oxoguanine DNA glycosylases provide structural insight into guanine/8-oxoguanine distinction.
  Structure, 17, 703-712.
PDB codes: 3fhf 3fhg
19361427 F.Faucher, S.M.Robey-Bond, S.S.Wallace, and S.Doublié (2009).
Structural characterization of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase in its apo form and in complex with 8-oxodeoxyguanosine.
  J Mol Biol, 387, 669-679.
PDB codes: 3f0z 3f10
19537786 P.C.Anderson, and V.Daggett (2009).
The R46Q, R131Q and R154H polymorphs of human DNA glycosylase/beta-lyase hOgg1 severely distort the active site and DNA recognition site but do not cause unfolding.
  J Am Chem Soc, 131, 9506-9515.  
18682218 B.R.Bowman, S.Lee, S.Wang, and G.L.Verdine (2008).
Structure of the E. coli DNA glycosylase AlkA bound to the ends of duplex DNA: a system for the structure determination of lesion-containing DNA.
  Structure, 16, 1166-1174.
PDB codes: 3cvs 3cvt 3cw7 3cwa 3cws 3cwt 3cwu
18084297 C.S.Chen, E.Korobkova, H.Chen, J.Zhu, X.Jian, S.C.Tao, C.He, and H.Zhu (2008).
A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli.
  Nat Methods, 5, 69-74.  
18472311 G.M.Lingaraju, M.Kartalou, L.B.Meira, and L.D.Samson (2008).
Substrate specificity and sequence-dependent activity of the Saccharomyces cerevisiae 3-methyladenine DNA glycosylase (Mag).
  DNA Repair (Amst), 7, 970-982.  
18464997 L.R.Rutledge, H.F.Durst, and S.D.Wetmore (2008).
Computational comparison of the stacking interactions between the aromatic amino acids and the natural or (cationic) methylated nucleobases.
  Phys Chem Chem Phys, 10, 2801-2812.  
18191412 S.Adhikari, P.V.Manthena, A.Uren, and R.Roy (2008).
Expression, purification and characterization of codon-optimized human N-methylpurine-DNA glycosylase from Escherichia coli.
  Protein Expr Purif, 58, 257-262.  
17768096 S.Adhikari, S.J.Kennel, G.Roy, P.S.Mitra, S.Mitra, and R.Roy (2008).
Discrimination of lesion removal of N-methylpurine-DNA glycosylase revealed by a potent neutralizing monoclonal antibody.
  DNA Repair (Amst), 7, 31-39.  
17410210 A.H.Metz, T.Hollis, and B.F.Eichman (2007).
DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
  EMBO J, 26, 2411-2420.
PDB codes: 2ofi 2ofk
17395642 B.Dalhus, I.H.Helle, P.H.Backe, I.Alseth, T.Rognes, M.Bjørås, and J.K.Laerdahl (2007).
Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats.
  Nucleic Acids Res, 35, 2451-2459.  
17426120 G.Mao, X.Pan, B.B.Zhu, Y.Zhang, F.Yuan, J.Huang, M.A.Lovell, M.P.Lee, W.R.Markesbery, G.M.Li, and L.Gu (2007).
Identification and characterization of OGG1 mutations in patients with Alzheimer's disease.
  Nucleic Acids Res, 35, 2759-2766.  
17396151 I.Leiros, M.P.Nabong, K.Grøsvik, J.Ringvoll, G.T.Haugland, L.Uldal, K.Reite, I.K.Olsbu, I.Knaevelsrud, E.Moe, O.A.Andersen, N.K.Birkeland, P.Ruoff, A.Klungland, and S.Bjelland (2007).
Structural basis for enzymatic excision of N1-methyladenine and N3-methylcytosine from DNA.
  EMBO J, 26, 2206-2217.
PDB codes: 2jhj 2jhn
17716976 S.Adhikari, A.Uren, and R.Roy (2007).
N-terminal extension of N-methylpurine DNA glycosylase is required for turnover in hypoxanthine excision reaction.
  J Biol Chem, 282, 30078-30084.  
16469386 Y.Mishina, and C.He (2006).
Oxidative dealkylation DNA repair mediated by the mononuclear non-heme iron AlkB proteins.
  J Inorg Biochem, 100, 670-678.  
16464003 Y.Mishina, E.M.Duguid, and C.He (2006).
Direct reversal of DNA alkylation damage.
  Chem Rev, 106, 215-232.  
15116069 B.I.Lee, K.H.Kim, S.J.Park, S.H.Eom, H.K.Song, and S.W.Suh (2004).
Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair.
  EMBO J, 23, 2029-2038.
PDB code: 1vdd
15249553 F.Coste, M.Ober, T.Carell, S.Boiteux, C.Zelwer, and B.Castaing (2004).
Structural basis for the recognition of the FapydG lesion (2,6-diamino-4-hydroxy-5-formamidopyrimidine) by formamidopyrimidine-DNA glycosylase.
  J Biol Chem, 279, 44074-44083.
PDB codes: 1tdz 1xc8
15494448 K.Hashiguchi, J.A.Stuart, N.C.de Souza-Pinto, and V.A.Bohr (2004).
The C-terminal alphaO helix of human Ogg1 is essential for 8-oxoguanine DNA glycosylase activity: the mitochondrial beta-Ogg1 lacks this domain and does not have glycosylase activity.
  Nucleic Acids Res, 32, 5596-5608.  
15326180 R.C.Manuel, K.Hitomi, A.S.Arvai, P.G.House, A.J.Kurtz, M.L.Dodson, A.K.McCullough, J.A.Tainer, and R.S.Lloyd (2004).
Reaction intermediates in the catalytic mechanism of Escherichia coli MutY DNA glycosylase.
  J Biol Chem, 279, 46930-46939.
PDB codes: 1wef 1weg 1wei
15128940 Y.Choi, J.J.Harada, R.B.Goldberg, and R.L.Fischer (2004).
An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene.
  Proc Natl Acad Sci U S A, 101, 7481-7486.  
14517230 B.F.Eichman, E.J.O'Rourke, J.P.Radicella, and T.Ellenberger (2003).
Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases.
  EMBO J, 22, 4898-4909.
PDB codes: 1pu6 1pu7 1pu8
14522053 E.M.Duguid, Y.Mishina, and C.He (2003).
How do DNA repair proteins locate potential base lesions? a chemical crosslinking method to investigate O6-alkylguanine-DNA alkyltransferases.
  Chem Biol, 10, 827-835.  
14527324 G.L.Verdine, and D.P.Norman (2003).
Covalent trapping of protein-DNA complexes.
  Annu Rev Biochem, 72, 337-366.  
12840008 J.C.Fromme, and G.L.Verdine (2003).
Structure of a trapped endonuclease III-DNA covalent intermediate.
  EMBO J, 22, 3461-3471.
PDB codes: 1orn 1orp 1p59
12592398 J.C.Fromme, S.D.Bruner, W.Yang, M.Karplus, and G.L.Verdine (2003).
Product-assisted catalysis in base-excision DNA repair.
  Nat Struct Biol, 10, 204-211.
PDB codes: 1hu0 1lwv 1lww 1lwy
12202763 A.B.Guliaev, B.Hang, and B.Singer (2002).
Structural insights by molecular dynamics simulations into differential repair efficiency for ethano-A versus etheno-A adducts by the human alkylpurine-DNA N-glycosylase.
  Nucleic Acids Res, 30, 3778-3787.  
12161745 A.C.Drohat, K.Kwon, D.J.Krosky, and J.T.Stivers (2002).
3-Methyladenine DNA glycosylase I is an unexpected helix-hairpin-helix superfamily member.
  Nat Struct Biol, 9, 659-664.
PDB code: 1lmz
11847126 D.O.Zharkov, G.Golan, R.Gilboa, A.S.Fernandes, S.E.Gerchman, J.H.Kycia, R.A.Rieger, A.P.Grollman, and G.Shoham (2002).
Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate.
  EMBO J, 21, 789-800.
PDB codes: 1k3w 1k3x
12034821 F.Dantzer, L.Luna, M.Bjørås, and E.Seeberg (2002).
Human OGG1 undergoes serine phosphorylation and associates with the nuclear matrix and mitotic chromatin in vivo.
  Nucleic Acids Res, 30, 2349-2357.  
12434002 H.Terato, A.Masaoka, K.Asagoshi, A.Honsho, Y.Ohyama, T.Suzuki, M.Yamada, K.Makino, K.Yamamoto, and H.Ide (2002).
Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid.
  Nucleic Acids Res, 30, 4975-4984.  
12198481 K.S.Yan, and M.M.Zhou (2002).
TAGging the target for damage control.
  Nat Struct Biol, 9, 638-640.  
11264462 C.J.Norbury, and I.D.Hickson (2001).
Cellular responses to DNA damage.
  Annu Rev Pharmacol Toxicol, 41, 367-401.  
11160880 H.Yang, I.T.Phan, S.Fitz-Gibbon, M.K.Shivji, R.D.Wood, W.M.Clendenin, E.C.Hyman, and J.H.Miller (2001).
A thermostable endonuclease III homolog from the archaeon Pyrobaculum aerophilum.
  Nucleic Acids Res, 29, 604-613.  
11223884 O.D.Schärer, and J.Jiricny (2001).
Recent progress in the biology, chemistry and structural biology of DNA glycosylases.
  Bioessays, 23, 270-281.  
11591657 X.Li, and A.L.Lu (2001).
Molecular cloning and functional analysis of the MutY homolog of Deinococcus radiodurans.
  J Bacteriol, 183, 6151-6158.  
11695910 X.Liu, and R.Roy (2001).
Mutation at active site lysine 212 to arginine uncouples the glycosylase activity from the lyase activity of human endonuclease III.
  Biochemistry, 40, 13617-13622.  
10813834 A.Gogos, D.Jantz, S.Sentürker, D.Richardson, M.Dizdaroglu, and N.D.Clarke (2000).
Assignment of enzyme substrate specificity by principal component analysis of aligned protein sequences: an experimental test using DNA glycosylase homologs.
  Proteins, 40, 98.  
11058099 A.J.Doherty, and S.W.Suh (2000).
Structural and mechanistic conservation in DNA ligases.
  Nucleic Acids Res, 28, 4051-4058.  
10735851 A.Memisoglu, and L.Samson (2000).
Contribution of base excision repair, nucleotide excision repair, and DNA recombination to alkylation resistance of the fission yeast Schizosaccharomyces pombe.
  J Bacteriol, 182, 2104-2112.  
11106395 A.Y.Lau, M.D.Wyatt, B.J.Glassner, L.D.Samson, and T.Ellenberger (2000).
Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG.
  Proc Natl Acad Sci U S A, 97, 13573-13578.
PDB codes: 1ewn 1f4r 1f6o
11087375 C.V.Privezentzev, M.Saparbaev, A.Sambandam, M.M.Greenberg, and J.Laval (2000).
AlkA protein is the third Escherichia coli DNA repair protein excising a ring fragmentation product of thymine.
  Biochemistry, 39, 14263-14268.  
10679461 F.A.Quiocho, G.Hu, and P.D.Gershon (2000).
Structural basis of mRNA cap recognition by proteins.
  Curr Opin Struct Biol, 10, 78-86.  
10671447 H.Yang, S.Fitz-Gibbon, E.M.Marcotte, J.H.Tai, E.C.Hyman, and J.H.Miller (2000).
Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum.
  J Bacteriol, 182, 1272-1279.  
10771522 J.J.Tsai-Wu, H.T.Su, Y.L.Wu, S.M.Hsu, and C.H.Wu (2000).
Nuclear localization of the human mutY homologue hMYH.
  J Cell Biochem, 77, 666-677.  
10698952 J.Y.Lee, C.Chang, H.K.Song, J.Moon, J.K.Yang, H.K.Kim, S.T.Kwon, and S.W.Suh (2000).
Crystal structure of NAD(+)-dependent DNA ligase: modular architecture and functional implications.
  EMBO J, 19, 1119-1129.
PDB codes: 1dgs 1dgt 1v9p
10684927 M.Saparbaev, J.C.Mani, and J.Laval (2000).
Interactions of the human, rat, Saccharomyces cerevisiae and Escherichia coli 3-methyladenine-DNA glycosylases with DNA containing dIMP residues.
  Nucleic Acids Res, 28, 1332-1339.  
10921868 M.Sugahara, T.Mikawa, T.Kumasaka, M.Yamamoto, R.Kato, K.Fukuyama, Y.Inoue, and S.Kuramitsu (2000).
Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8.
  EMBO J, 19, 3857-3869.
PDB code: 1ee8
10660595 R.Roy, T.Biswas, J.C.Lee, and S.Mitra (2000).
Mutation of a unique aspartate residue abolishes the catalytic activity but not substrate binding of the mouse N-methylpurine-DNA glycosylase (MPG).
  J Biol Chem, 275, 4278-4282.  
12760025 S.D.Bruner, D.P.Norman, J.C.Fromme, and G.L.Verdine (2000).
Structural and mechanistic studies on repair of 8-oxoguanine in mammalian cells.
  Cold Spring Harb Symp Quant Biol, 65, 103-111.  
10924106 T.C.Umland, S.Q.Wei, R.Craigie, and D.R.Davies (2000).
Structural basis of DNA bridging by barrier-to-autointegration factor.
  Biochemistry, 39, 9130-9138.
PDB code: 1ci4
10675345 T.Hollis, Y.Ichikawa, and T.Ellenberger (2000).
DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA.
  EMBO J, 19, 758-766.
PDB code: 1diz
11095667 X.Li, and A.L.Lu (2000).
Intact MutY and its catalytic domain differentially contact with A/8-oxoG-containing DNA.
  Nucleic Acids Res, 28, 4593-4603.  
10722679 X.Li, P.M.Wright, and A.L.Lu (2000).
The C-terminal domain of MutY glycosylase determines the 7,8-dihydro-8-oxo-guanine specificity and is crucial for mutation avoidance.
  J Biol Chem, 275, 8448-8455.  
10908318 X.Shao, and N.V.Grishin (2000).
Common fold in helix-hairpin-helix proteins.
  Nucleic Acids Res, 28, 2643-2650.  
10737925 Y.J.Gu, and Z.X.Xia (2000).
Crystal structures of the complexes of trichosanthin with four substrate analogs and catalytic mechanism of RNA N-glycosidase.
  Proteins, 39, 37-46.
PDB code: 1qd2
10872450 A.K.McCullough, M.L.Dodson, and R.S.Lloyd (1999).
Initiation of base excision repair: glycosylase mechanisms and structures.
  Annu Rev Biochem, 68, 255-285.  
10455195 A.Masaoka, H.Terato, M.Kobayashi, A.Honsho, Y.Ohyama, and H.Ide (1999).
Enzymatic repair of 5-formyluracil. I. Excision of 5-formyluracil site-specifically incorporated into oligonucleotide substrates by alka protein (Escherichia coli 3-methyladenine DNA glycosylase II).
  J Biol Chem, 274, 25136-25143.  
10410797 C.D.Mol, S.S.Parikh, C.D.Putnam, T.P.Lo, and J.A.Tainer (1999).
DNA repair mechanisms for the recognition and removal of damaged DNA bases.
  Annu Rev Biophys Biomol Struct, 28, 101-128.  
10350454 D.M.Noll, A.Gogos, J.A.Granek, and N.D.Clarke (1999).
The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity for 8-oxoguanine.adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase.
  Biochemistry, 38, 6374-6379.  
10377383 G.Hu, P.D.Gershon, A.E.Hodel, and F.A.Quiocho (1999).
mRNA cap recognition: dominant role of enhanced stacking interactions between methylated bases and protein aromatic side chains.
  Proc Natl Acad Sci U S A, 96, 7149-7154.
PDB codes: 1b42 1bky 1eam 1eqa 3mag 3mct 4dcg
10455196 H.Terato, A.Masaoka, M.Kobayashi, S.Fukushima, Y.Ohyama, M.Yoshida, and H.Ide (1999).
Enzymatic repair of 5-formyluracil. II. Mismatch formation between 5-formyluracil and guanine during dna replication and its recognition by two proteins involved in base excision repair (AlkA) and mismatch repair (MutS).
  J Biol Chem, 274, 25144-25150.  
10074426 K.A.Haushalter, M.W.Todd Stukenberg, M.W.Kirschner, and G.L.Verdine (1999).
Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors.
  Curr Biol, 9, 174-185.  
  10542179 L.M.Posnick, and L.D.Samson (1999).
Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli.
  J Bacteriol, 181, 6763-6771.  
10440863 M.D.Wyatt, J.M.Allan, A.Y.Lau, T.E.Ellenberger, and L.D.Samson (1999).
3-methyladenine DNA glycosylases: structure, function, and biological importance.
  Bioessays, 21, 668-676.  
10353811 M.P.Golinelli, N.H.Chmiel, and S.S.David (1999).
Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY.
  Biochemistry, 38, 6997-7007.  
10506150 P.M.Wright, J.Yu, J.Cillo, and A.L.Lu (1999).
The active site of the Escherichia coli MutY DNA adenine glycosylase.
  J Biol Chem, 274, 29011-29018.  
10212183 S.Li, and M.J.Smerdon (1999).
Base excision repair of N-methylpurines in a yeast minichromosome. Effects of transcription, dna sequence, and nucleosome positioning.
  J Biol Chem, 274, 12201-12204.  
10047578 S.S.Parikh, C.D.Mol, D.J.Hosfield, and J.A.Tainer (1999).
Envisioning the molecular choreography of DNA base excision repair.
  Curr Opin Struct Biol, 9, 37-47.  
10375529 T.J.Begley, B.J.Haas, J.Noel, A.Shekhtman, W.A.Williams, and R.P.Cunningham (1999).
A new member of the endonuclease III family of DNA repair enzymes that removes methylated purines from DNA.
  Curr Biol, 9, 653-656.  
10409616 T.Selmer, and W.Buckel (1999).
Oxygen exchange between acetate and the catalytic glutamate residue in glutaconate CoA-transferase from Acidaminococcus fermentans. Implications for the mechanism of CoA-ester hydrolysis.
  J Biol Chem, 274, 20772-20778.  
9737967 A.L.Lu, and W.P.Fawcett (1998).
Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from yeast Schizosaccharomyces pombe.
  J Biol Chem, 273, 25098-25105.  
9461471 B.Holz, S.Klimasauskas, S.Serva, and E.Weinhold (1998).
2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases.
  Nucleic Acids Res, 26, 1076-1083.  
9730810 D.O.Zharkov, and A.P.Grollman (1998).
MutY DNA glycosylase: base release and intermediate complex formation.
  Biochemistry, 37, 12384-12394.  
9705516 F.Miao, M.Bouziane, and T.R.O'Connor (1998).
Interaction of the recombinant human methylpurine-DNA glycosylase (MPG protein) with oligodeoxyribonucleotides containing either hypoxanthine or abasic sites.
  Nucleic Acids Res, 26, 4034-4041.  
9430628 K.G.Berdal, R.F.Johansen, and E.Seeberg (1998).
Release of normal bases from intact DNA by a native DNA repair enzyme.
  EMBO J, 17, 363-367.  
9730821 K.Goodtzova, S.Kanugula, S.Edara, and A.E.Pegg (1998).
Investigation of the role of tyrosine-114 in the activity of human O6-alkylguanine-DNA alkyltranferase.
  Biochemistry, 37, 12489-12495.  
9783745 M.O'Gara, J.R.Horton, R.J.Roberts, and X.Cheng (1998).
Structures of HhaI methyltransferase complexed with substrates containing mismatches at the target base.
  Nat Struct Biol, 5, 872-877.
PDB codes: 7mht 8mht 9mht
9434942 M.Tani, K.Shinmura, T.Kohno, T.Shiroishi, S.Wakana, S.R.Kim, T.Nohmi, H.Kasai, S.Takenoshita, Y.Nagamachi, and J.Yokota (1998).
Genomic structure and chromosomal localization of the mouse Ogg1 gene that is involved in the repair of 8-hydroxyguanine in DNA damage.
  Mamm Genome, 9, 32-37.  
9535832 O.D.Schärer, H.M.Nash, J.Jiricny, J.Laval, and G.L.Verdine (1998).
Specific binding of a designed pyrrolidine abasic site analog to multiple DNA glycosylases.
  J Biol Chem, 273, 8592-8597.  
9759487 R.J.Roberts, and X.Cheng (1998).
Base flipping.
  Annu Rev Biochem, 67, 181-198.  
9545197 S.D.Bruner, H.M.Nash, W.S.Lane, and G.L.Verdine (1998).
Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway.
  Curr Biol, 8, 393-403.  
9705289 S.Ikeda, T.Biswas, R.Roy, T.Izumi, I.Boldogh, A.Kurosky, A.H.Sarker, S.Seki, and S.Mitra (1998).
Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue.
  J Biol Chem, 273, 21585-21593.  
9572864 S.L.Porello, M.J.Cannon, and S.S.David (1998).
A substrate recognition role for the [4Fe-4S]2+ cluster of the DNA repair glycosylase MutY.
  Biochemistry, 37, 6465-6475.  
9846876 Y.Guan, R.C.Manuel, A.S.Arvai, S.S.Parikh, C.D.Mol, J.H.Miller, S.Lloyd, and J.A.Tainer (1998).
MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily.
  Nat Struct Biol, 5, 1058-1064.
PDB codes: 1mud 1mun 1muy
9145102 A.E.Hodel, P.D.Gershon, X.Shi, S.M.Wang, and F.A.Quiocho (1997).
Specific protein recognition of an mRNA cap through its alkylated base.
  Nat Struct Biol, 4, 350-354.
PDB codes: 1p39 1v39 1vp3 1vp9 2vp3
9032058 D.G.Vassylyev, and K.Morikawa (1997).
DNA-repair enzymes.
  Curr Opin Struct Biol, 7, 103-109.  
9125491 G.P.Mullen, and S.H.Wilson (1997).
DNA polymerase beta in abasic site repair: a structurally conserved helix-hairpin-helix motif in lesion detection by base excision repair enzymes.
  Biochemistry, 36, 4713-4717.  
9302999 H.Matsuo, H.Li, A.M.McGuire, C.M.Fletcher, A.C.Gingras, N.Sonenberg, and G.Wagner (1997).
Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein.
  Nat Struct Biol, 4, 717-724.
PDB code: 1ap8
  9371633 J.Sekiguchi, and S.Shuman (1997).
Nick sensing by vaccinia virus DNA ligase requires a 5' phosphate at the nick and occupancy of the adenylate binding site on the enzyme.
  J Virol, 71, 9679-9684.  
9079656 K.Goodtzova, S.Kanugula, S.Edara, G.T.Pauly, R.C.Moschel, and A.E.Pegg (1997).
Repair of O6-benzylguanine by the Escherichia coli Ada and Ogt and the human O6-alkylguanine-DNA alkyltransferases.
  J Biol Chem, 272, 8332-8339.  
9125531 L.E.Rabow, and Y.W.Kow (1997).
Mechanism of action of base release by Escherichia coli Fpg protein: role of lysine 155 in catalysis.
  Biochemistry, 36, 5084-5096.  
9321410 M.Bjorâs, L.Luna, B.Johnsen, E.Hoff, T.Haug, T.Rognes, and E.Seeberg (1997).
Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites.
  EMBO J, 16, 6314-6322.  
9667887 O.D.Schärer, L.Deng, and G.L.Verdine (1997).
Chemical approaches toward understanding base excision DNA repair.
  Curr Opin Chem Biol, 1, 526-531.  
9144158 O.D.Schärer, T.Kawate, P.Gallinari, J.Jiricny, and G.L.Verdine (1997).
Investigation of the mechanisms of DNA binding of the human G/T glycosylase using designed inhibitors.
  Proc Natl Acad Sci U S A, 94, 4878-4883.  
8990169 R.Aspinwall, D.G.Rothwell, T.Roldan-Arjona, C.Anselmino, C.J.Ward, J.P.Cheadle, J.R.Sampson, T.Lindahl, P.C.Harris, and I.D.Hickson (1997).
Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III.
  Proc Natl Acad Sci U S A, 94, 109-114.  
9287157 R.C.Manuel, and R.S.Lloyd (1997).
Cloning, overexpression, and biochemical characterization of the catalytic domain of MutY.
  Biochemistry, 36, 11140-11152.  
9197244 R.Lu, H.M.Nash, and G.L.Verdine (1997).
A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer.
  Curr Biol, 7, 397-407.  
9354758 R.S.Lloyd, and X.Cheng (1997).
Mechanistic link between DNA methyltransferases and DNA repair enzymes by base flipping.
  Biopolymers, 44, 139-151.  
  8994804 A.Memisoglu, and L.Samson (1996).
DNA repair functions in heterologous cells.
  Crit Rev Biochem Mol Biol, 31, 405-447.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer