spacer
spacer

PDBsum entry 1mos

Go to PDB code: 
protein ligands metals links
Transferase PDB id
1mos
Jmol
Contents
Protein chain
367 a.a. *
Ligands
SO4 ×3
AGP
MES
Metals
_NA
Waters ×180
* Residue conservation analysis
PDB id:
1mos
Name: Transferase
Title: Isomerase domain of glucosamine 6-phosphate synthase complex amino-2-deoxyglucitol 6-phosphate
Structure: Glucosamine 6-phosphate synthase. Chain: a. Fragment: isomerase domain. Synonym: l-glutamine:d-fructose-6p amidotransferase. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Strain: 3000hfr. Atcc: atcc 25257. Collection: atcc 25257. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Hexamer (from PDB file)
Resolution:
2.00Å     R-factor:   0.244     R-free:   0.287
Authors: A.Teplyakov,G.Obmolova,M.A.Badet-Denisot,B.Badet
Key ref: A.Teplyakov et al. (1999). The mechanism of sugar phosphate isomerization by glucosamine 6-phosphate synthase. Protein Sci, 8, 596-602. PubMed id: 10091662 DOI: 10.1110/ps.8.3.596
Date:
15-Jul-98     Release date:   29-Jul-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P17169  (GLMS_ECOLI) -  Glutamine--fructose-6-phosphate aminotransferase [isomerizing]
Seq:
Struc:
 
Seq:
Struc:
609 a.a.
367 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.6.1.16  - Glutamine--fructose-6-phosphate transaminase (isomerizing).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
UDP-N-acetylglucosamine Biosynthesis
      Reaction: L-glutamine + D-fructose 6-phosphate = L-glutamate + D-glucosamine 6-phosphate
L-glutamine
+ D-fructose 6-phosphate
= L-glutamate
+
D-glucosamine 6-phosphate
Bound ligand (Het Group name = AGP)
corresponds exactly
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     carbohydrate metabolic process   2 terms 
  Biochemical function     carbohydrate binding     2 terms  

 

 
    reference    
 
 
DOI no: 10.1110/ps.8.3.596 Protein Sci 8:596-602 (1999)
PubMed id: 10091662  
 
 
The mechanism of sugar phosphate isomerization by glucosamine 6-phosphate synthase.
A.Teplyakov, G.Obmolova, M.A.Badet-Denisot, B.Badet.
 
  ABSTRACT  
 
Glucosamine 6-phosphate synthase converts fructose-6P into glucosamine-6P or glucose-6P depending on the presence or absence of glutamine. The isomerase activity is associated with a 40-kDa C-terminal domain, which has already been characterized crystallographically. Now the three-dimensional structures of the complexes with the reaction product glucose-6P and with the transition state analog 2-amino-2-deoxyglucitol-6P have been determined. Glucose-6P binds in a cyclic form whereas 2-amino-2-deoxyglucitol-6P is in an extended conformation. The information on ligand-protein interactions observed in the crystal structures together with the isotope exchange and site-directed mutagenesis data allow us to propose a mechanism of the isomerase activity of glucosamine-6P synthase. The sugar phosphate isomerization involves a ring opening step catalyzed by His504 and an enolization step with Glu488 catalyzing the hydrogen transfer from C1 to C2 of the substrate. The enediol intermediate is stabilized by a helix dipole and the epsilon-amino group of Lys603. Lys485 may play a role in deprotonating the hydroxyl O1 of the intermediate.
 

Literature references that cite this PDB file's key reference Google scholar

  PubMed id Reference
18951916 A.R.Parks, and J.E.Peters (2009).
Tn7 elements: engendering diversity from chromosomes to episomes.
  Plasmid, 61, 1.  
19282391 I.C.Schoenhofen, E.Vinogradov, D.M.Whitfield, J.R.Brisson, and S.M.Logan (2009).
The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors.
  Glycobiology, 19, 715-725.  
19643913 N.L.Beer, N.D.Tribble, L.J.McCulloch, C.Roos, P.R.Johnson, M.Orho-Melander, and A.L.Gloyn (2009).
The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver.
  Hum Mol Genet, 18, 4081-4088.  
19234762 Y.Kim, P.Quartey, R.Ng, T.I.Zarembinski, and A.Joachimiak (2009).
Crystal structure of YfeU protein from Haemophilus influenzae: a predicted etherase involved in peptidoglycan recycling.
  J Struct Funct Genomics, 10, 151-156.  
17484020 C.S.Park, S.J.Yeom, H.J.Kim, S.H.Lee, J.K.Lee, S.W.Kim, and D.K.Oh (2007).
Characterization of ribose-5-phosphate isomerase of Clostridium thermocellum producing D-allose from D-psicose.
  Biotechnol Lett, 29, 1387-1391.  
17387737 K.J.Kim, M.H.Kim, G.H.Kim, and B.S.Kang (2007).
The crystal structure of a novel glucosamine-6-phosphate deaminase from the hyperthermophilic archaeon Pyrococcus furiosus.
  Proteins, 68, 413-417.
PDB code: 2cb0
16477602 J.Seetharaman, K.R.Rajashankar, V.Solorzano, R.Kniewel, C.D.Lima, J.B.Bonanno, S.K.Burley, and S.Swaminathan (2006).
Crystal structures of two putative phosphoheptose isomerases.
  Proteins, 63, 1092-1096.
PDB codes: 1tk9 1x94
16408321 S.Milewski, I.Gabriel, and J.Olchowy (2006).
Enzymes of UDP-GlcNAc biosynthesis in yeast.
  Yeast, 23, 1.  
16199574 T.Tanaka, F.Takahashi, T.Fukui, S.Fujiwara, H.Atomi, and T.Imanaka (2005).
Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon.
  J Bacteriol, 187, 7038-7044.  
15511226 F.A.Lunn, and S.L.Bearne (2004).
Alternative substrates for wild-type and L109A E. coli CTP synthases: kinetic evidence for a constricted ammonia tunnel.
  Eur J Biochem, 271, 4204-4212.  
  12093378 C.Jenkins, V.Kedar, and J.A.Fuerst (2002).
Gene discovery within the planctomycete division of the domain Bacteria using sequence tags from genomic DNA libraries.
  Genome Biol, 3, RESEARCH0031.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.