PDBsum entry 1mah

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Complex (hydrolase/toxin) PDB id
Protein chains
533 a.a. *
61 a.a. *
* Residue conservation analysis
PDB id:
Name: Complex (hydrolase/toxin)
Title: Fasciculin2-mouse acetylcholinesterase complex
Structure: Acetylcholinesterase. Chain: a. Synonym: mache. Engineered: yes. Fasciculin 2. Chain: f. Synonym: toxin f-vii, fas2, toxin tai
Source: Mus musculus. House mouse. Organism_taxid: 10090. Strain: black6-cba cross f1. Cell_line: 293. Organ: brain (cdna). Gene: mouse ache. Expressed in: homo sapiens. Expression_system_taxid: 9606.
Biol. unit: Dimer (from PQS)
3.20Å     R-factor:   0.184     R-free:   0.294
Authors: Y.Bourne,P.Taylor,P.Marchot
Key ref: Y.Bourne et al. (1995). Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell, 83, 503-512. PubMed id: 8521480 DOI: 10.1016/0092-8674(95)90128-0
21-Nov-95     Release date:   03-Apr-96    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P21836  (ACES_MOUSE) -  Acetylcholinesterase
614 a.a.
533 a.a.
Protein chain
Pfam   ArchSchema ?
P0C1Z0  (TXFA2_DENAN) -  Fasciculin-2
61 a.a.
61 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chain A: E.C.  - Acetylcholinesterase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Acetylcholine + H2O = choline + acetate
Bound ligand (Het Group name = NAG)
matches with 41.18% similarity
+ H(2)O
= choline
+ acetate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular region   17 terms 
  Biological process     modification of morphology or physiology of other organism   14 terms 
  Biochemical function     carboxylic ester hydrolase activity     9 terms  


DOI no: 10.1016/0092-8674(95)90128-0 Cell 83:503-512 (1995)
PubMed id: 8521480  
Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex.
Y.Bourne, P.Taylor, P.Marchot.
The crystal structure of the snake toxin fasciculin, bound to mouse acetylcholinesterase (mAChE), at 3.2 A resolution reveals a synergistic three-point anchorage consistent with the picomolar dissociation constant of the complex. Loop II of fasciculin contains a cluster of hydrophobic residues that interact with the peripheral anionic site of the enzyme and sterically occlude substrate access to the catalytic site. Loop I fits in a crevice near the lip of the gorge to maximize the surface area of contact of loop II at the gorge entry. The fasciculin core surrounds a protruding loop on the enzyme surface and stabilizes the whole assembly. Upon binding of fasciculin, subtle structural rearrangements of AChE occur that could explain the observed residual catalytic activity of the fasciculin-enzyme complex.

Literature references that cite this PDB file's key reference

  PubMed id Reference
20034789 L.Guo, A.I.Suarez, M.R.Braden, J.M.Gerdes, and C.M.Thompson (2010).
Inhibition of acetylcholinesterase by chromophore-linked fluorophosphonates.
  Bioorg Med Chem Lett, 20, 1194-1197.  
19757206 T.L.Rosenberry (2010).
Strategies to resolve the catalytic mechanism of acetylcholinesterase.
  J Mol Neurosci, 40, 32-39.  
19276074 J.Lee, X.Wang, B.Di Jeso, and P.Arvan (2009).
The Cholinesterase-like Domain, Essential in Thyroglobulin Trafficking for Thyroid Hormone Synthesis, Is Required for Protein Dimerization.
  J Biol Chem, 284, 12752-12761.  
19643977 O.Sharabi, Y.Peleg, E.Mashiach, E.Vardy, Y.Ashani, I.Silman, J.L.Sussman, and J.M.Shifman (2009).
Design, expression and characterization of mutants of fasciculin optimized for interaction with its target, acetylcholinesterase.
  Protein Eng Des Sel, 22, 641-648.  
17921202 A.A.Gorfe, C.E.Chang, I.Ivanov, and J.A.McCammon (2008).
Dynamics of the acetylcholinesterase tetramer.
  Biophys J, 94, 1144-1154.  
18550038 D.Comoletti, A.Grishaev, A.E.Whitten, P.Taylor, and J.Trewhella (2008).
Characterization of the solution structure of a neuroligin/beta-neurexin complex.
  Chem Biol Interact, 175, 150-155.  
18452905 J.M.Bui, and J.Andrew McCammon (2008).
Intrinsic conformational flexibility of acetylcholinesterase.
  Chem Biol Interact, 175, 303-304.  
17932929 R.Alsallaq, and H.X.Zhou (2008).
Electrostatic rate enhancement and transient complex of protein-protein association.
  Proteins, 71, 320-335.  
18602908 T.L.Rosenberry, L.K.Sonoda, S.E.Dekat, B.Cusack, and J.L.Johnson (2008).
Monitoring the reaction of carbachol with acetylcholinesterase by thioflavin T fluorescence and acetylthiocholine hydrolysis.
  Chem Biol Interact, 175, 235-241.  
19006330 T.L.Rosenberry, L.K.Sonoda, S.E.Dekat, B.Cusack, and J.L.Johnson (2008).
Analysis of the reaction of carbachol with acetylcholinesterase using thioflavin T as a coupled fluorescence reporter.
  Biochemistry, 47, 13056-13063.  
18084303 X.Chen, H.Liu, A.H.Shim, P.J.Focia, and X.He (2008).
Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions.
  Nat Struct Mol Biol, 15, 50-56.
PDB code: 3b3q
17237112 A.Hildebrandt, R.Blossey, S.Rjasanow, O.Kohlbacher, and H.P.Lenhof (2007).
Electrostatic potentials of proteins in water: a structured continuum approach.
  Bioinformatics, 23, e99-103.  
17562316 D.Comoletti, A.Grishaev, A.E.Whitten, I.Tsigelny, P.Taylor, and J.Trewhella (2007).
Synaptic arrangement of the neuroligin/beta-neurexin complex revealed by X-ray and neutron scattering.
  Structure, 15, 693-705.  
18093521 I.P.Fabrichny, P.Leone, G.Sulzenbacher, D.Comoletti, M.T.Miller, P.Taylor, Y.Bourne, and P.Marchot (2007).
Structural analysis of the synaptic protein neuroligin and its beta-neurexin complex: determinants for folding and cell adhesion.
  Neuron, 56, 979-991.
PDB codes: 2vh8 2wqz 3be8
18007027 J.P.Colletier, A.Royant, A.Specht, B.Sanson, F.Nachon, P.Masson, G.Zaccai, J.L.Sussman, M.Goeldner, I.Silman, D.Bourgeois, and M.Weik (2007).
Use of a 'caged' analogue to study the traffic of choline within acetylcholinesterase by kinetic crystallography.
  Acta Crystallogr D Biol Crystallogr, 63, 1115-1128.
PDB codes: 2v96 2v97 2v98 2va9
17364237 M.Ahmed, J.B.Rocha, C.M.Mazzanti, A.L.Morsch, D.Cargnelutti, M.Corrêa, V.Loro, V.M.Morsch, and M.R.Schetinger (2007).
Malathion, carbofuran and paraquat inhibit Bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro.
  Ecotoxicology, 16, 363-369.  
17292839 R.Alsallaq, and H.X.Zhou (2007).
Prediction of protein-protein association rates from a transition-state theory.
  Structure, 15, 215-224.  
17307827 Y.Cheng, J.K.Suen, D.Zhang, S.D.Bond, Y.Zhang, Y.Song, N.A.Baker, C.L.Bajaj, M.J.Holst, and J.A.McCammon (2007).
Finite element analysis of the time-dependent Smoluchowski equation for acetylcholinesterase reaction rate calculations.
  Biophys J, 92, 3397-3406.  
16337696 C.Dean, and T.Dresbach (2006).
Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function.
  Trends Neurosci, 29, 21-29.  
16455662 E.Krejci, I.Martinez-Pena y Valenzuela, R.Ameziane, and M.Akaaboune (2006).
Acetylcholinesterase dynamics at the neuromuscular junction of live animals.
  J Biol Chem, 281, 10347-10354.  
16856180 F.Dong, and H.X.Zhou (2006).
Electrostatic contribution to the binding stability of protein-protein complexes.
  Proteins, 65, 87.  
17021015 J.M.Bui, and J.A.McCammon (2006).
Protein complex formation by acetylcholinesterase and the neurotoxin fasciculin-2 appears to involve an induced-fit mechanism.
  Proc Natl Acad Sci U S A, 103, 15451-15456.  
16473897 J.M.Bui, Z.Radic, P.Taylor, and J.A.McCammon (2006).
Conformational transitions in protein-protein association: binding of fasciculin-2 to acetylcholinesterase.
  Biophys J, 90, 3280-3287.  
16763558 J.P.Colletier, D.Fournier, H.M.Greenblatt, J.Stojan, J.L.Sussman, G.Zaccai, I.Silman, and M.Weik (2006).
Structural insights into substrate traffic and inhibition in acetylcholinesterase.
  EMBO J, 25, 2746-2756.
PDB codes: 2c4h 2c58 2c5f 2c5g
16572227 P.J.Houghton, Y.Ren, and M.J.Howes (2006).
Acetylcholinesterase inhibitors from plants and fungi.
  Nat Prod Rep, 23, 181-199.  
16837465 Y.Bourne, Z.Radic, G.Sulzenbacher, E.Kim, P.Taylor, and P.Marchot (2006).
Substrate and product trafficking through the active center gorge of acetylcholinesterase analyzed by crystallography and equilibrium binding.
  J Biol Chem, 281, 29256-29267.
PDB codes: 2h9y 2ha0 2ha2 2ha3 2ha4 2ha5 2ha6 2ha7
  19809581 Y.Zhang, G.Xu, and C.Bajaj (2006).
Quality Meshing of Implicit Solvation Models of Biomolecular Structures.
  Comput Aided Geom Des, 23, 510-530.  
15626705 D.Zhang, J.Suen, Y.Zhang, Y.Song, Z.Radic, P.Taylor, M.J.Holst, C.Bajaj, N.A.Baker, and J.A.McCammon (2005).
Tetrameric mouse acetylcholinesterase: continuum diffusion rate calculations by solving the steady-state Smoluchowski equation using finite element methods.
  Biophys J, 88, 1659-1665.  
15998641 I.Martinez-Pena y Valenzuela, R.I.Hume, E.Krejci, and M.Akaaboune (2005).
In vivo regulation of acetylcholinesterase insertion at the neuromuscular junction.
  J Biol Chem, 280, 31801-31808.  
15822102 J.L.Jiménez (2005).
Does structural and chemical divergence play a role in precluding undesirable protein interactions?
  Proteins, 59, 757-764.  
  16569291 M.E.Selkirk, O.Lazari, and J.B.Matthews (2005).
Functional genomics of nematode acetylcholinesterases.
  Parasitology, 131, S3-18.  
15791209 Y.Bourne, T.T.Talley, S.B.Hansen, P.Taylor, and P.Marchot (2005).
Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors.
  EMBO J, 24, 1512-1522.
PDB code: 1yi5
15078872 A.E.Boyd, C.S.Dunlop, L.Wong, Z.Radic, P.Taylor, and D.A.Johnson (2004).
Nanosecond dynamics of acetylcholinesterase near the active center gorge.
  J Biol Chem, 279, 26612-26618.  
15452105 A.Kukkonen, M.Peräkylä, K.E.Akerman, and J.Näsman (2004).
Muscarinic toxin 7 selectivity is dictated by extracellular receptor loops.
  J Biol Chem, 279, 50923-50929.  
15526038 H.Dvir, M.Harel, S.Bon, W.Q.Liu, M.Vidal, C.Garbay, J.L.Sussman, J.Massoulié, and I.Silman (2004).
The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix.
  EMBO J, 23, 4394-4405.
PDB code: 1vzj
15030487 J.Stojan, L.Brochier, C.Alies, J.P.Colletier, and D.Fournier (2004).
Inhibition of Drosophila melanogaster acetylcholinesterase by high concentrations of substrate.
  Eur J Biochem, 271, 1364-1371.  
15117947 R.E.Hibbs, T.T.Talley, and P.Taylor (2004).
Acrylodan-conjugated cysteine side chains reveal conformational state and ligand site locations of the acetylcholine-binding protein.
  J Biol Chem, 279, 28483-28491.  
14686917 S.Bon, J.Dufourcq, J.Leroy, I.Cornut, and J.Massoulié (2004).
The C-terminal t peptide of acetylcholinesterase forms an alpha helix that supports homomeric and heteromeric interactions.
  Eur J Biochem, 271, 33-47.  
14757816 Y.Bourne, H.C.Kolb, Z.Radić, K.B.Sharpless, P.Taylor, and P.Marchot (2004).
Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation.
  Proc Natl Acad Sci U S A, 101, 1449-1454.
PDB codes: 1q83 1q84
14764582 Y.N.Park, and P.Arvan (2004).
The acetylcholinesterase homology region is essential for normal conformational maturation and secretion of thyroglobulin.
  J Biol Chem, 279, 17085-17089.  
15041644 Y.Song, Y.Zhang, T.Shen, C.L.Bajaj, J.A.McCammon, and N.A.Baker (2004).
Finite element solution of the steady-state Smoluchowski equation for rate constant calculations.
  Biophys J, 86, 2017-2029.  
14622273 A.Saxena, J.M.Fedorko, C.R.Vinayaka, R.Medhekar, Z.Radić, P.Taylor, O.Lockridge, and B.P.Doctor (2003).
Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases.
  Eur J Biochem, 270, 4447-4458.  
14507691 J.M.Bui, R.H.Henchman, and J.A.McCammon (2003).
The dynamics of ligand barrier crossing inside the acetylcholinesterase gorge.
  Biophys J, 85, 2267-2272.  
12759360 J.Shi, K.Tai, J.A.McCammon, P.Taylor, and D.A.Johnson (2003).
Nanosecond dynamics of the mouse acetylcholinesterase cys69-cys96 omega loop.
  J Biol Chem, 278, 30905-30911.  
12601798 T.Zeev-Ben-Mordehai, I.Silman, and J.L.Sussman (2003).
Acetylcholinesterase in motion: visualizing conformational changes in crystal structures by a morphing procedure.
  Biopolymers, 68, 395-406.  
12505979 Y.Bourne, P.Taylor, Z.Radić, and P.Marchot (2003).
Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site.
  EMBO J, 22, 1.
PDB codes: 1j06 1j07 1ku6 1n5m 1n5r
12869558 Y.Nicolet, O.Lockridge, P.Masson, J.C.Fontecilla-Camps, and F.Nachon (2003).
Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products.
  J Biol Chem, 278, 41141-41147.
PDB codes: 1p0i 1p0m 1p0p 1p0q
12006581 F.Teixeira-Clerc, A.Ménez, and P.Kessler (2002).
How do short neurotoxins bind to a muscular-type nicotinic acetylcholine receptor?
  J Biol Chem, 277, 25741-25747.  
11863435 H.Dvir, D.M.Wong, M.Harel, X.Barril, M.Orozco, F.J.Luque, D.Muñoz-Torrero, P.Camps, T.L.Rosenberry, I.Silman, and J.L.Sussman (2002).
3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution: kinetic and molecular dynamic correlates.
  Biochemistry, 41, 2970-2981.
PDB code: 1e66
12196517 J.Shi, Z.Radic', and P.Taylor (2002).
Inhibitors of different structure induce distinguishing conformations in the omega loop, Cys69-Cys96, of mouse acetylcholinesterase.
  J Biol Chem, 277, 43301-43308.  
12192064 R.H.Henchman, and J.A.McCammon (2002).
Structural and dynamic properties of water around acetylcholinesterase.
  Protein Sci, 11, 2080-2090.  
11984847 R.H.Henchman, and J.A.McCammon (2002).
Extracting hydration sites around proteins from explicit water simulations.
  J Comput Chem, 23, 861-869.  
11964254 R.H.Henchman, K.Tai, T.Shen, and J.A.McCammon (2002).
Properties of water molecules in the active site gorge of acetylcholinesterase from computer simulation.
  Biophys J, 82, 2671-2682.  
11517229 J.Shi, A.E.Boyd, Z.Radic, and P.Taylor (2001).
Reversibly bound and covalently attached ligands induce conformational changes in the omega loop, Cys69-Cys96, of mouse acetylcholinesterase.
  J Biol Chem, 276, 42196-42204.  
11463620 K.Tai, T.Shen, U.Börjesson, M.Philippopoulos, and J.A.McCammon (2001).
Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase.
  Biophys J, 81, 715-724.  
11170446 M.Golicnik, D.Fournier, and J.Stojan (2001).
Interaction of Drosophila acetylcholinesterases with D-tubocurarine: an explanation of the activation by an inhibitor.
  Biochemistry, 40, 1214-1219.  
10849442 A.Ricciardi, M.H.le Du, M.Khayati, F.Dajas, J.C.Boulain, A.Menez, and F.Ducancel (2000).
Do structural deviations between toxins adopting the same fold reflect functional differences?
  J Biol Chem, 275, 18302-18310.  
11053835 G.Kryger, M.Harel, K.Giles, L.Toker, B.Velan, A.Lazar, C.Kronman, D.Barak, N.Ariel, A.Shafferman, I.Silman, and J.L.Sussman (2000).
Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II.
  Acta Crystallogr D Biol Crystallogr, 56, 1385-1394.
PDB codes: 1b41 1f8u
10681526 H.Osaka, S.Malany, B.E.Molles, S.M.Sine, and P.Taylor (2000).
Pairwise electrostatic interactions between alpha-neurotoxins and gamma, delta, and epsilon subunits of the nicotinic acetylcholine receptor.
  J Biol Chem, 275, 5478-5484.  
  10739260 I.Tsigelny, I.N.Shindyalov, P.E.Bourne, T.C.Südhof, and P.Taylor (2000).
Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations.
  Protein Sci, 9, 180-185.  
10801325 L.Wong, Z.Radic, R.J.Brüggemann, N.Hosea, H.A.Berman, and P.Taylor (2000).
Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis.
  Biochemistry, 39, 5750-5757.  
  10892800 M.Harel, G.Kryger, T.L.Rosenberry, W.D.Mallender, T.Lewis, R.J.Fletcher, J.M.Guss, I.Silman, and J.L.Sussman (2000).
Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors.
  Protein Sci, 9, 1063-1072.
PDB codes: 1dx4 1qo9 1qon
10777563 N.Bren, and S.M.Sine (2000).
Hydrophobic pairwise interactions stabilize alpha-conotoxin MI in the muscle acetylcholine receptor binding site.
  J Biol Chem, 275, 12692-12700.  
11112524 S.Malany, H.Osaka, S.M.Sine, and P.Taylor (2000).
Orientation of alpha-neurotoxin at the subunit interfaces of the nicotinic acetylcholine receptor.
  Biochemistry, 39, 15388-15398.  
10679631 S.T.Wlodek, T.Shen, and J.A.McCammon (2000).
Electrostatic steering of substrate to acetylcholinesterase: analysis of field fluctuations.
  Biopolymers, 53, 265-271.  
10869180 W.D.Mallender, T.Szegletes, and T.L.Rosenberry (2000).
Acetylthiocholine binds to asp74 at the peripheral site of human acetylcholinesterase as the first step in the catalytic pathway.
  Biochemistry, 39, 7753-7763.  
10231521 C.Bartolucci, E.Perola, L.Cellai, M.Brufani, and D.Lamba (1999).
"Back door" opening implied by the crystal structure of a carbamoylated acetylcholinesterase.
  Biochemistry, 38, 5714-5719.
PDB code: 1oce
  10493580 G.Manco, F.Febbraio, E.Adinolfi, and M.Rossi (1999).
Homology modeling and active-site residues probing of the thermophilic Alicyclobacillus acidocaldarius esterase 2.
  Protein Sci, 8, 1789-1796.  
10330416 H.B.Peng, H.Xie, S.G.Rossi, and R.L.Rotundo (1999).
Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan.
  J Cell Biol, 145, 911-921.  
10574966 J.W.Chen, Y.L.Luo, M.J.Hwang, F.C.Peng, and K.H.Ling (1999).
Territrem B, a tremorgenic mycotoxin that inhibits acetylcholinesterase with a noncovalent yet irreversible binding mechanism.
  J Biol Chem, 274, 34916-34923.  
10082962 M.Sentjurc, S.Pecar, J.Stojan, P.Marchot, Z.Radić, and Z.Grubic (1999).
Electron paramagnetic resonance reveals altered topography of the active center gorge of acetylcholinesterase after binding of fasciculin to the peripheral site.
  Biochim Biophys Acta, 1430, 349-358.  
10450086 N.A.Baker, V.Helms, and J.A.McCammon (1999).
Dynamical properties of fasciculin-2.
  Proteins, 36, 447-453.  
10545346 S.A.Botti, C.E.Felder, S.Lifson, J.L.Sussman, and I.Silman (1999).
A modular treatment of molecular traffic through the active site of cholinesterase
  Biophys J, 77, 2430-2450.  
10488117 S.Simon, A.Le Goff, Y.Frobert, J.Grassi, and J.Massoulié (1999).
The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door".
  J Biol Chem, 274, 27740-27746.  
10341665 S.Tara, T.P.Straatsma, and J.A.McCammon (1999).
Mouse acetylcholinesterase unliganded and in complex with huperzine A: a comparison of molecular dynamics simulations.
  Biopolymers, 50, 35-43.  
10423544 S.Tara, V.Helms, T.P.Straatsma, and J.A.McCammon (1999).
Molecular dynamics of mouse acetylcholinesterase complexed with huperzine A.
  Biopolymers, 50, 347-359.  
9890890 T.Szegletes, W.D.Mallender, P.J.Thomas, and T.L.Rosenberry (1999).
Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect.
  Biochemistry, 38, 122-133.  
10491072 V.Tsetlin (1999).
Snake venom alpha-neurotoxins and other 'three-finger' proteins.
  Eur J Biochem, 264, 281-286.  
10085081 W.D.Mallender, T.Szegletes, and T.L.Rosenberry (1999).
Organophosphorylation of acetylcholinesterase in the presence of peripheral site ligands. Distinct effects of propidium and fasciculin.
  J Biol Chem, 274, 8491-8499.  
10521413 Y.Bourne, J.Grassi, P.E.Bougis, and P.Marchot (1999).
Conformational flexibility of the acetylcholinesterase tetramer suggested by x-ray crystallography.
  J Biol Chem, 274, 30370-30376.
PDB codes: 1c2b 1c2o
9915834 Y.Bourne, P.Taylor, P.E.Bougis, and P.Marchot (1999).
Crystal structure of mouse acetylcholinesterase. A peripheral site-occluding loop in a tetrameric assembly.
  J Biol Chem, 274, 2963-2970.
PDB code: 1maa
10446376 Z.Kovarik, Z.Radić, B.Grgas, M.Skrinjarić-Spoljar, E.Reiner, and V.Simeon-Rudolf (1999).
Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline.
  Biochim Biophys Acta, 1433, 261-271.  
9671522 F.Nachon, L.Ehret-Sabatier, D.Loew, C.Colas, A.van Dorsselaer, and M.Goeldner (1998).
Trp82 and Tyr332 are involved in two quaternary ammonium binding domains of human butyrylcholinesterase as revealed by photoaffinity labeling with [3H]DDF.
  Biochemistry, 37, 10507-10513.  
9707574 P.S.Kim, S.A.Hossain, Y.N.Park, I.Lee, S.E.Yoo, and P.Arvan (1998).
A single amino acid change in the acetylcholinesterase-like domain of thyroglobulin causes congenital goiter with hypothyroidism in the cog/cog mouse: a model of human endoplasmic reticulum storage diseases.
  Proc Natl Acad Sci U S A, 95, 9909-9913.  
10089512 R.B.Ravelli, M.L.Raves, Z.Ren, D.Bourgeois, M.Roth, J.Kroon, I.Silman, and J.L.Sussman (1998).
Static Laue diffraction studies on acetylcholinesterase.
  Acta Crystallogr D Biol Crystallogr, 54, 1359-1366.
PDB codes: 1ax9 2ack
9749719 S.Bataillé, P.Portalier, P.Coulon, and J.P.Ternaux (1998).
Influence of acetylcholinesterase on embryonic spinal rat motoneurones growth in culture: a quantitative morphometric study.
  Eur J Neurosci, 10, 560-572.  
9838872 S.Tara, A.H.Elcock, P.D.Kirchhoff, J.M.Briggs, Z.Radic, P.Taylor, and J.A.McCammon (1998).
Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge.
  Biopolymers, 46, 465-474.  
9521743 T.Szegletes, W.D.Mallender, and T.L.Rosenberry (1998).
Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands.
  Biochemistry, 37, 4206-4216.  
9204869 C.Viragh, R.Akhmetshin, I.M.Kovach, and C.Broomfield (1997).
Unique push-pull mechanism of dealkylation in soman-inhibited cholinesterases.
  Biochemistry, 36, 8243-8252.  
9053451 D.L.Bodian, S.J.Davis, B.P.Morgan, and N.K.Rushmere (1997).
Mutational analysis of the active site and antibody epitopes of the complement-inhibitory glycoprotein, CD59.
  J Exp Med, 185, 507-516.  
9013597 P.Marchot, C.N.Prowse, J.Kanter, S.Camp, E.J.Ackermann, Z.Radić, P.E.Bougis, and P.Taylor (1997).
Expression and activity of mutants of fasciculin, a peptidic acetylcholinesterase inhibitor from mamba venom.
  J Biol Chem, 272, 3502-3510.  
9016525 X.Cousin, T.Hotelier, K.Giles, P.Lievin, J.P.Toutant, and A.Chatonnet (1997).
The alpha/beta fold family of proteins database and the cholinesterase gene server ESTHER.
  Nucleic Acids Res, 25, 143-146.  
9287336 Z.Radić, P.D.Kirchhoff, D.M.Quinn, J.A.McCammon, and P.Taylor (1997).
Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and fasciculin.
  J Biol Chem, 272, 23265-23277.  
  8890157 I.Darboux, Y.Barthalay, M.Piovant, and R.Hipeau-Jacquotte (1996).
The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties.
  EMBO J, 15, 4835-4843.  
8913681 J.P.Turkenburg, and E.J.Dodson (1996).
Modern developments in molecular replacement.
  Curr Opin Struct Biol, 6, 604-610.  
8718877 L.Peng, I.Silman, J.Sussman, and M.Goeldner (1996).
Biochemical evaluation of photolabile precursors of choline and of carbamylcholine for potential time-resolved crystallographic studies on cholinesterases.
  Biochemistry, 35, 10854-10861.  
8718893 N.A.Hosea, Z.Radić, I.Tsigelny, H.A.Berman, D.M.Quinn, and P.Taylor (1996).
Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates.
  Biochemistry, 35, 10995-11004.  
8900129 N.Sugiyama, A.E.Boyd, and P.Taylor (1996).
Anionic residue in the alpha-subunit of the nicotinic acetylcholine receptor contributing to subunit assembly and ligand binding.
  J Biol Chem, 271, 26575-26581.  
  8845756 P.Marchot, R.B.Ravelli, M.L.Raves, Y.Bourne, D.C.Vellom, J.Kanter, S.Camp, J.L.Sussman, and P.Taylor (1996).
Soluble monomeric acetylcholinesterase from mouse: expression, purification, and crystallization in complex with fasciculin.
  Protein Sci, 5, 672-679.  
8547248 T.L.Rosenberry, C.R.Rabl, and E.Neumann (1996).
Binding of the neurotoxin fasciculin 2 to the acetylcholinesterase peripheral site drastically reduces the association and dissociation rate constants for N-methylacridinium binding to the active site.
  Biochemistry, 35, 685-690.  
8662867 X.Cousin, S.Bon, N.Duval, J.Massoulié, and C.Bon (1996).
Cloning and expression of acetylcholinesterase from Bungarus fasciatus venom. A new type of cooh-terminal domain; involvement of a positively charged residue in the peripheral site.
  J Biol Chem, 271, 15099-15108.  
8597093 P.Taylor, Z.Radic, N.A.Hosea, S.Camp, P.Marchot, and H.A.Berman (1995).
Structural bases for the specificity of cholinesterase catalysis and inhibition.
  Toxicol Lett, 82, 453-458.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.