PDBsum entry 1m2z

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hormone/hormone activator PDB id
Protein chains
255 a.a. *
21 a.a. *
BOG ×3
DEX ×2
Waters ×205
* Residue conservation analysis
PDB id:
Name: Hormone/hormone activator
Title: Crystal structure of a dimer complex of the human glucocorticoid receptor ligand-binding domain bound to dexamethasone and a tif2 coactivator motif
Structure: Glucocorticoid receptor. Chain: a, d. Fragment: ligand binding domain, residues 521-777. Synonym: gr. Engineered: yes. Mutation: yes. Nuclear receptor coactivator 2. Chain: b, e. Fragment: tif2 coactivator motif, residues 734-754.
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Synthetic: yes. Other_details: the peptide was chemically synthesized. The source of the peptide is naturally found in homo sapiens (human).
Biol. unit: Tetramer (from PQS)
2.50Å     R-factor:   0.267     R-free:   0.267
Authors: R.B.Bledsoe,V.G.Montana,T.B.Stanley,C.J.Delves,C.J.Apolito, D.D.Mckee,T.G.Consler,D.J.Parks,E.L.Stewart,T.M.Willson, M.H.Lambert,J.T.Moore,K.H.Pearce,H.E.Xu
Key ref:
R.K.Bledsoe et al. (2002). Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell, 110, 93. PubMed id: 12151000 DOI: 10.1016/S0092-8674(02)00817-6
26-Jun-02     Release date:   15-Jul-03    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P04150  (GCR_HUMAN) -  Glucocorticoid receptor
777 a.a.
255 a.a.*
Protein chains
Pfam   ArchSchema ?
Q15596  (NCOA2_HUMAN) -  Nuclear receptor coactivator 2
1464 a.a.
21 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     nucleus   1 term 
  Biological process     steroid hormone mediated signaling pathway   2 terms 
  Biochemical function     DNA binding     3 terms  


DOI no: 10.1016/S0092-8674(02)00817-6 Cell 110:93 (2002)
PubMed id: 12151000  
Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition.
R.K.Bledsoe, V.G.Montana, T.B.Stanley, C.J.Delves, C.J.Apolito, D.D.McKee, T.G.Consler, D.J.Parks, E.L.Stewart, T.M.Willson, M.H.Lambert, J.T.Moore, K.H.Pearce, H.E.Xu.
Transcriptional regulation by the glucocorticoid receptor (GR) is mediated by hormone binding, receptor dimerization, and coactivator recruitment. Here, we report the crystal structure of the human GR ligand binding domain (LBD) bound to dexamethasone and a coactivator motif derived from the transcriptional intermediary factor 2. Despite structural similarity to other steroid receptors, the GR LBD adopts a surprising dimer configuration involving formation of an intermolecular beta sheet. Functional studies demonstrate that the novel dimer interface is important for GR-mediated activation. The structure also reveals an additional charge clamp that determines the binding selectivity of a coactivator and a distinct ligand binding pocket that explains its selectivity for endogenous steroid hormones. These results establish a framework for understanding the roles of protein-hormone and protein-protein interactions in GR signaling pathways.
  Selected figure(s)  
Figure 5.
Figure 5. Structural Basis for the Specificity of Coactivator Motifs(A) A superposition of the TIF2 third motif (purple) with the SRC-1 motif (green) on the surface of the GR coactivator binding site, where color is based on atom types (carbons: white, sulfur: yellow, nitrogen: blue and oxygen: red). The hydrogen bonds between the TIF2 residues (R+2 and D+6) and the GR residues (D590 and R585) that form the second charge clamp are indicated by green dashed lines.(B) Sequences of the second and third coactivator motifs in TIF2, and the mutated peptide M32, where the charged residues R+2 and D+6 in the third motif have been replaced with the corresponding residues from the second motif, H+2 and Q+6.(C) Conservation of amino acids in the second charge clamp. Sequence alignment of GR, AR, PR, and MR with arrows indicating the residues that form the second charge clamp.(D) Effects of the R+2H and D+6Q mutation (the M32 peptide) on the binding of the coactivator motifs to GR, PR, AR, and ERβ. Dose inhibition curves are shown for the binding of the TIF2 third motif (circles) and the mutated third motif (squares) with control curves of DMSO (triangles). Compared with the wild-type TIF2 third motif, the mutated motif decreases its affinity to GR, AR, and PR by 15- to 50-fold, but has little effect (<2-fold) on binding to ERβ.(E) Effects of the second charge clamp mutations (R585A and D590A) on the activation mediated by the GR LBD, as compared with the wild-type GR LBD or the mutations in the first charge clamp from the AF-2 helix (E755A or E755R).
Figure 7.
Figure 7. Basis for the GR Mutations(A) The locations of natural GR mutations are represented as Van der Waals spheres in the overall structure. Green mutations are the residues that contact dexmethasone directly in the structure and the white mutations are in the residues that form the hydrophobic core of the protein. The side chain of S602 is also presented.(B) Hydrogen bond network mediated by the S602 in the F602S mutant (balls and sticks) and nearby water molecules (red spheres) inside of the protein.
  The above figures are reprinted by permission from Cell Press: Cell (2002, 110, 93-0) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21232159 A.S.Arterbery, D.J.Fergus, E.A.Fogarty, J.Mayberry, D.L.Deitcher, W.Lee Kraus, and A.H.Bass (2011).
Evolution of ligand specificity in vertebrate corticosteroid receptors.
  BMC Evol Biol, 11, 14.  
20399565 C.Anacker, P.A.Zunszain, L.A.Carvalho, and C.M.Pariante (2011).
The glucocorticoid receptor: pivot of depression and of antidepressant treatment?
  Psychoneuroendocrinology, 36, 415-425.  
20692346 J.J.Kerrigan, Q.Xie, R.S.Ames, and Q.Lu (2011).
Production of protein complexes via co-expression.
  Protein Expr Purif, 75, 1.  
20086048 A.Berry, L.Matthews, M.Jangani, J.Plumb, S.Farrow, N.Buchan, P.A.Wilson, D.Singh, D.W.Ray, and R.P.Donn (2010).
Interferon-inducible factor 16 is a novel modulator of glucocorticoid action.
  FASEB J, 24, 1700-1713.  
20333619 A.S.Veleiro, L.D.Alvarez, S.L.Eduardo, and G.Burton (2010).
Structure of the glucocorticoid receptor, a flexible protein that can adapt to different ligands.
  ChemMedChem, 5, 649-659.  
20949009 D.M.Presman, L.D.Alvarez, V.Levi, S.Eduardo, M.A.Digman, M.A.Martí, A.S.Veleiro, G.Burton, and A.Pecci (2010).
Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids.
  PLoS One, 5, e13279.  
20669259 G.K.Prasanth, L.M.Divya, and C.Sadasivan (2010).
Bisphenol-A can bind to human glucocorticoid receptor as an agonist: an in silico study.
  J Appl Toxicol, 30, 769-774.  
20351279 K.M.Ong, J.A.Blackford, B.L.Kagan, S.S.Simons, and C.C.Chow (2010).
A theoretical framework for gene induction and experimental comparisons.
  Proc Natl Acad Sci U S A, 107, 7107-7112.  
20723571 L.Jin, and Y.Li (2010).
Structural and functional insights into nuclear receptor signaling.
  Adv Drug Deliv Rev, 62, 1218-1226.  
19818358 N.C.Nicolaides, Z.Galata, T.Kino, G.P.Chrousos, and E.Charmandari (2010).
The human glucocorticoid receptor: molecular basis of biologic function.
  Steroids, 75, 1.  
20148675 P.Huang, V.Chandra, and F.Rastinejad (2010).
Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics.
  Annu Rev Physiol, 72, 247-272.  
19932713 R.Newton, R.Leigh, and M.A.Giembycz (2010).
Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases.
  Pharmacol Ther, 125, 286-327.  
20849387 S.Kfir-Erenfeld, R.V.Sionov, R.Spokoini, O.Cohen, and E.Yefenof (2010).
Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations.
  Leuk Lymphoma, 51, 1968-2005.  
18930837 A.A.George, R.L.Schiltz, and G.L.Hager (2009).
Dynamic access of the glucocorticoid receptor to response elements in chromatin.
  Int J Biochem Cell Biol, 41, 214-224.  
19223869 A.Mukherjee, K.P.Narayan, K.Pal, J.M.Kumar, N.Rangaraj, S.V.Kalivendi, and R.Banerjee (2009).
Selective cancer targeting via aberrant behavior of cancer cell-associated glucocorticoid receptor.
  Mol Ther, 17, 623-631.  
19211567 H.Abdel-Hafiz, M.L.Dudevoir, and K.B.Horwitz (2009).
Mechanisms underlying the control of progesterone receptor transcriptional activity by SUMOylation.
  J Biol Chem, 284, 9099-9108.  
19906239 J.R.Revollo, and J.A.Cidlowski (2009).
Mechanisms generating diversity in glucocorticoid receptor signaling.
  Ann N Y Acad Sci, 1179, 167-178.  
19822747 K.Biggadike, R.K.Bledsoe, D.M.Coe, T.W.Cooper, D.House, M.A.Iannone, S.J.Macdonald, K.P.Madauss, I.M.McLay, T.J.Shipley, S.J.Taylor, T.B.Tran, I.J.Uings, V.Weller, and S.P.Williams (2009).
Design and x-ray crystal structures of high-potency nonsteroidal glucocorticoid agonists exploiting a novel binding site on the receptor.
  Proc Natl Acad Sci U S A, 106, 18114-18119.
PDB codes: 3k22 3k23
19557178 M.E.Baker, D.J.Chang, and C.Chandsawangbhuwana (2009).
3D model of lamprey estrogen receptor with estradiol and 15alpha-hydroxy-estradiol.
  PLoS One, 4, e6038.  
19009570 M.Spreafico, B.Ernst, M.A.Lill, M.Smiesko, and A.Vedani (2009).
Mixed-model QSAR at the glucocorticoid receptor: predicting the binding mode and affinity of psychotropic drugs.
  ChemMedChem, 4, 100-109.  
19333551 S.Ellmann, H.Sticht, F.Thiel, M.W.Beckmann, R.Strick, and P.L.Strissel (2009).
Estrogen and progesterone receptors: from molecular structures to clinical targets.
  Cell Mol Life Sci, 66, 2405-2426.  
19633971 T.Kino, Y.A.Su, and G.P.Chrousos (2009).
Human glucocorticoid receptor isoform beta: recent understanding of its potential implications in physiology and pathophysiology.
  Cell Mol Life Sci, 66, 3435-3448.  
18212811 A.McMaster, and D.W.Ray (2008).
Drug insight: selective agonists and antagonists of the glucocorticoid receptor.
  Nat Clin Pract Endocrinol Metab, 4, 91.  
18958157 C.Gumy, C.Chandsawangbhuwana, A.A.Dzyakanchuk, D.V.Kratschmar, M.E.Baker, and A.Odermatt (2008).
Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.
  PLoS ONE, 3, e3545.  
18406164 D.B.Magner, and A.Antebi (2008).
Caenorhabditis elegans nuclear receptors: insights into life traits.
  Trends Endocrinol Metab, 19, 153-160.  
18441008 H.Greschik, M.Althage, R.Flaig, Y.Sato, V.Chavant, C.Peluso-Iltis, L.Choulier, P.Cronet, N.Rochel, R.Schüle, P.E.Strömstedt, and D.Moras (2008).
Communication between the ERRalpha homodimer interface and the PGC-1alpha binding surface via the helix 8-9 loop.
  J Biol Chem, 283, 20220-20230.
PDB code: 3d24
18502379 J.Zhang, and D.S.Geller (2008).
Helix 3-helix 5 interactions in steroid hormone receptor function.
  J Steroid Biochem Mol Biol, 109, 279-285.  
18160712 K.Suino-Powell, Y.Xu, C.Zhang, Y.G.Tao, W.D.Tolbert, S.S.Simons, and H.E.Xu (2008).
Doubling the size of the glucocorticoid receptor ligand binding pocket by deacylcortivazol.
  Mol Cell Biol, 28, 1915-1923.
PDB code: 3bqd
18985652 L.D.Alvarez, M.A.Martí, A.S.Veleiro, R.I.Misico, D.A.Estrin, A.Pecci, and G.Burton (2008).
Hemisuccinate of 21-hydroxy-6,19-epoxyprogesterone: a tissue-specific modulator of the glucocorticoid receptor.
  ChemMedChem, 3, 1869-1877.  
18815806 M.Schubert, F.Brunet, M.Paris, S.Bertrand, G.Benoit, and V.Laudet (2008).
Nuclear hormone receptor signaling in amphioxus.
  Dev Genes Evol, 218, 651-665.  
19707462 R.Kumar, and W.J.Calhoun (2008).
Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation.
  Biologics, 2, 845-854.  
18799714 S.M.Carroll, J.T.Bridgham, and J.W.Thornton (2008).
Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors.
  Mol Biol Evol, 25, 2643-2652.  
18347588 S.Mader (2008).
Fast-tracking steroid receptor crystallization.
  Nat Chem Biol, 4, 226-227.  
18562626 S.R.Holmstrom, S.Chupreta, A.Y.So, and J.A.Iñiguez-Lluhí (2008).
SUMO-mediated inhibition of glucocorticoid receptor synergistic activity depends on stable assembly at the promoter but not on DAXX.
  Mol Endocrinol, 22, 2061-2075.  
18798693 S.W.Kruse, K.Suino-Powell, X.E.Zhou, J.E.Kretschman, R.Reynolds, C.Vonrhein, Y.Xu, L.Wang, S.Y.Tsai, M.J.Tsai, and H.E.Xu (2008).
Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor.
  PLoS Biol, 6, e227.
PDB code: 3cjw
18330543 T.Harada, K.Yamagishi, T.Nakano, K.Kitaura, and H.Tokiwa (2008).
Ab initio fragment molecular orbital study of ligand binding to human progesterone receptor ligand-binding domain.
  Naunyn Schmiedebergs Arch Pharmacol, 377, 607-615.  
17910058 T.Zhang, J.H.Zhou, L.W.Shi, R.X.Zhu, and M.B.Chen (2008).
Molecular dynamics simulation study for LRH-1: interaction with fragments of SHP and function of phospholipid ligand.
  Proteins, 70, 1527-1539.  
18578507 Y.G.Tao, Y.Xu, H.E.Xu, and S.S.Simons (2008).
Mutations of glucocorticoid receptor differentially affect AF2 domain activity in a steroid-selective manner to alter the potency and efficacy of gene induction and repression.
  Biochemistry, 47, 7648-7662.  
18583028 Y.Sun, Y.G.Tao, B.L.Kagan, Y.He, and S.S.Jr (2008).
Modulation of transcription parameters in glucocorticoid receptor-mediated repression.
  Mol Cell Endocrinol, 295, 59-69.  
17164529 A.M.Hassell, G.An, R.K.Bledsoe, J.M.Bynum, H.L.Carter, S.J.Deng, R.T.Gampe, T.E.Grisard, K.P.Madauss, R.T.Nolte, W.J.Rocque, L.Wang, K.L.Weaver, S.P.Williams, G.B.Wisely, R.Xu, and L.M.Shewchuk (2007).
Crystallization of protein-ligand complexes.
  Acta Crystallogr D Biol Crystallogr, 63, 72-79.  
  18473002 C.J.Corrigan, and T.K.Loke (2007).
Clinical and molecular aspects of glucocorticoid resistant asthma.
  Ther Clin Risk Manag, 3, 771-787.  
17933688 C.Kremoser, M.Albers, T.P.Burris, U.Deuschle, and M.Koegl (2007).
Panning for SNuRMs: using cofactor profiling for the rational discovery of selective nuclear receptor modulators.
  Drug Discov Today, 12, 860-869.  
17137423 D.L.Bain, A.F.Heneghan, K.D.Connaghan-Jones, and M.T.Miura (2007).
Nuclear receptor structure: implications for function.
  Annu Rev Physiol, 69, 201-220.  
17367809 D.Ricketson, U.Hostick, L.Fang, K.R.Yamamoto, and B.D.Darimont (2007).
A conformational switch in the ligand-binding domain regulates the dependence of the glucocorticoid receptor on Hsp90.
  J Mol Biol, 368, 729-741.  
17468738 K.W.Nettles, J.B.Bruning, G.Gil, E.E.O'Neill, J.Nowak, Y.Guo, A.Hughs, Y.Kim, E.R.DeSombre, R.Dilis, R.N.Hanson, A.Joachimiak, and G.L.Greene (2007).
Structural plasticity in the oestrogen receptor ligand-binding domain.
  EMBO Rep, 8, 563-568.
PDB code: 2p15
17242213 L.J.Lewis-Tuffin, C.M.Jewell, R.J.Bienstock, J.B.Collins, and J.A.Cidlowski (2007).
Human glucocorticoid receptor beta binds RU-486 and is transcriptionally active.
  Mol Cell Biol, 27, 2266-2282.  
17306029 M.E.Baker, C.Chandsawangbhuwana, and N.Ollikainen (2007).
Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors.
  BMC Evol Biol, 7, 24.  
17600153 M.R.Calgaro, M.d.e. .O.Neto, A.C.Figueira, M.A.Santos, R.V.Portugal, C.A.Guzzi, D.M.Saidemberg, L.Bleicher, J.Vernal, P.Fernandez, H.Terenzi, M.S.Palma, and I.Polikarpov (2007).
Orphan nuclear receptor NGFI-B forms dimers with nonclassical interface.
  Protein Sci, 16, 1762-1772.  
17655821 R.Kumar, J.M.Serrette, S.H.Khan, A.L.Miller, and E.B.Thompson (2007).
Effects of different osmolytes on the induced folding of the N-terminal activation domain (AF1) of the glucocorticoid receptor.
  Arch Biochem Biophys, 465, 452-460.  
17576789 S.Ekins, C.Chang, S.Mani, M.D.Krasowski, E.J.Reschly, M.Iyer, V.Kholodovych, N.Ai, W.J.Welsh, M.Sinz, P.W.Swaan, R.Patel, and K.Bachmann (2007).
Human pregnane X receptor antagonists and agonists define molecular requirements for different binding sites.
  Mol Pharmacol, 72, 592-603.  
17261597 S.H.Meijsing, C.Elbi, H.F.Luecke, G.L.Hager, and K.R.Yamamoto (2007).
The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release.
  Mol Cell Biol, 27, 2442-2451.  
16714764 B.R.Keppler, A.T.Grady, and M.B.Jarstfer (2006).
The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity.
  J Biol Chem, 281, 19840-19848.  
16806964 D.Picard (2006).
Chaperoning steroid hormone action.
  Trends Endocrinol Metab, 17, 229-235.  
  16387802 E.Goleva, L.B.Li, P.T.Eves, M.J.Strand, R.J.Martin, and D.Y.Leung (2006).
Increased glucocorticoid receptor beta alters steroid response in glucocorticoid-insensitive asthma.
  Am J Respir Crit Care Med, 173, 607-616.  
16902932 H.Rehwinkel, and H.Schäcke (2006).
GR ligands: can we improve the established drugs?
  ChemMedChem, 1, 803-805.  
16892386 J.T.Moore, J.L.Collins, and K.H.Pearce (2006).
The nuclear receptor superfamily and drug discovery.
  ChemMedChem, 1, 504-523.  
17130446 L.Fang, D.Ricketson, L.Getubig, and B.Darimont (2006).
Unliganded and hormone-bound glucocorticoid receptors interact with distinct hydrophobic sites in the Hsp90 C-terminal domain.
  Proc Natl Acad Sci U S A, 103, 18487-18492.  
16600964 L.Frego, and W.Davidson (2006).
Conformational changes of the glucocorticoid receptor ligand binding domain induced by ligand and cofactor binding, and the location of cofactor binding sites determined by hydrogen/deuterium exchange mass spectrometry.
  Protein Sci, 15, 722-730.  
16855130 L.J.Lewis-Tuffin, and J.A.Cidlowski (2006).
The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance.
  Ann N Y Acad Sci, 1069, 1-9.  
16835908 M.Raviscioni, Q.He, E.M.Salicru, C.L.Smith, and O.Lichtarge (2006).
Evolutionary identification of a subtype specific functional site in the ligand binding domain of steroid receptors.
  Proteins, 64, 1046-1057.  
16604091 P.J.Barnes (2006).
How corticosteroids control inflammation: Quintiles Prize Lecture 2005.
  Br J Pharmacol, 148, 245-254.  
16390935 R.V.Sionov, O.Cohen, S.Kfir, Y.Zilberman, and E.Yefenof (2006).
Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis.
  J Exp Med, 203, 189-201.  
17125454 Z.Orbak (2006).
Glucocorticoid resistance.
  Biochemistry (Mosc), 71, 1073-1081.  
  16711000 Z.Yang, X.Bai, H.Wang, Z.Li, S.Li, and B.Li (2006).
Correlation between endotoxin tolerance in human monocyte leukemia cell line THP-1 with glucocorticoid receptor-alpha.
  J Huazhong Univ Sci Technolog Med Sci, 26, 28-30.  
15563469 E.Estébanez-Perpiñá, J.M.Moore, E.Mar, E.Delgado-Rodrigues, P.Nguyen, J.D.Baxter, B.M.Buehrer, P.Webb, R.J.Fletterick, and R.K.Guy (2005).
The molecular mechanisms of coactivator utilization in ligand-dependent transactivation by the androgen receptor.
  J Biol Chem, 280, 8060-8068.
PDB codes: 1t5z 1t63 1t65 1xj7
15908963 J.Fagart, J.Huyet, G.M.Pinon, M.Rochel, C.Mayer, and M.E.Rafestin-Oblin (2005).
Crystal structure of a mutant mineralocorticoid receptor responsible for hypertension.
  Nat Struct Mol Biol, 12, 554-555.
PDB codes: 1y9r 1ya3
15710879 J.Zhang, J.Simisky, F.T.Tsai, and D.S.Geller (2005).
A critical role of helix 3-helix 5 interaction in steroid hormone receptor function.
  Proc Natl Acad Sci U S A, 102, 2707-2712.  
15883974 J.von Langen, K.H.Fritzemeier, S.Diekmann, and A.Hillisch (2005).
Molecular basis of the interaction specificity between the human glucocorticoid receptor and its endogenous steroid ligand cortisol.
  Chembiochem, 6, 1110-1118.  
15980170 L.Martínez, M.T.Sonoda, P.Webb, J.D.Baxter, M.S.Skaf, and I.Polikarpov (2005).
Molecular dynamics simulations reveal multiple pathways of ligand dissociation from thyroid hormone receptors.
  Biophys J, 89, 2011-2023.  
16200570 P.Buchwald (2005).
General linearized biexponential model for QSAR data showing bilinear-type distribution.
  J Pharm Sci, 94, 2355-2379.  
15994320 P.Gu, D.H.Morgan, M.Sattar, X.Xu, R.Wagner, M.Raviscioni, O.Lichtarge, and A.J.Cooney (2005).
Evolutionary trace-based peptides identify a novel asymmetric interaction that mediates oligomerization in nuclear receptors.
  J Biol Chem, 280, 31818-31829.  
16008667 P.J.Barnes (2005).
Will it be steroids for ever?
  Clin Exp Allergy, 35, 843-845.  
15967794 R.K.Bledsoe, K.P.Madauss, J.A.Holt, C.J.Apolito, M.H.Lambert, K.H.Pearce, T.B.Stanley, E.L.Stewart, R.P.Trump, T.M.Willson, and S.P.Williams (2005).
A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor.
  J Biol Chem, 280, 31283-31293.
PDB codes: 2aa2 2aa5 2aa6 2aa7 2aax 2ab2
15897460 W.Wang, C.Zhang, A.Marimuthu, H.I.Krupka, M.Tabrizizad, R.Shelloe, U.Mehra, K.Eng, H.Nguyen, C.Settachatgul, B.Powell, M.V.Milburn, and B.L.West (2005).
The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1.
  Proc Natl Acad Sci U S A, 102, 7505-7510.
PDB codes: 1zdt 1zdu
16061183 Y.Li, K.Suino, J.Daugherty, and H.E.Xu (2005).
Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor.
  Mol Cell, 19, 367-380.
PDB code: 2a3i
15976031 Y.Li, M.Choi, K.Suino, A.Kovach, J.Daugherty, S.A.Kliewer, and H.E.Xu (2005).
Structural and biochemical basis for selective repression of the orphan nuclear receptor liver receptor homolog 1 by small heterodimer partner.
  Proc Natl Acad Sci U S A, 102, 9505-9510.
PDB codes: 1zgy 1zh7
15328534 E.Hur, S.J.Pfaff, E.S.Payne, H.Grøn, B.M.Buehrer, and R.J.Fletterick (2004).
Recognition and accommodation at the androgen receptor coactivator binding interface.
  PLoS Biol, 2, E274.
PDB codes: 1t73 1t74 1t76 1t79 1t7f 1t7m 1t7r 1t7t
15554912 F.M.Rogerson, Y.Yao, B.J.Smith, and P.J.Fuller (2004).
Differences in the determinants of eplerenone, spironolactone and aldosterone binding to the mineralocorticoid receptor.
  Clin Exp Pharmacol Physiol, 31, 704-709.  
15246430 G.Benoit, M.Malewicz, and T.Perlmann (2004).
Digging deep into the pockets of orphan nuclear receptors: insights from structural studies.
  Trends Cell Biol, 14, 369-376.  
15355994 H.Garside, A.Stevens, S.Farrow, C.Normand, B.Houle, A.Berry, B.Maschera, and D.Ray (2004).
Glucocorticoid ligands specify different interactions with NF-kappaB by allosteric effects on the glucocorticoid receptor DNA binding domain.
  J Biol Chem, 279, 50050-50059.  
15450240 K.H.Pearce, M.A.Iannone, C.A.Simmons, and J.G.Gray (2004).
Discovery of novel nuclear receptor modulating ligands: an integral role for peptide interaction profiling.
  Drug Discov Today, 9, 741-751.  
15610733 K.Suino, L.Peng, R.Reynolds, Y.Li, J.Y.Cha, J.J.Repa, S.A.Kliewer, and H.E.Xu (2004).
The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization.
  Mol Cell, 16, 893-905.
PDB code: 1xls
14966297 L.Wang, C.L.Hsu, J.Ni, P.H.Wang, S.Yeh, P.Keng, and C.Chang (2004).
Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells.
  Mol Cell Biol, 24, 2202-2213.  
15265774 M.U.De Martino, S.Alesci, G.P.Chrousos, and T.Kino (2004).
Interaction of the glucocorticoid receptor and the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII): implications for the actions of glucocorticoids on glucose, lipoprotein, and xenobiotic metabolism.
  Ann N Y Acad Sci, 1024, 72-85.  
15265776 N.Z.Lu, and J.A.Cidlowski (2004).
The origin and functions of multiple human glucocorticoid receptor isoforms.
  Ann N Y Acad Sci, 1024, 102-123.  
15459674 P.J.Barnes (2004).
New drugs for asthma.
  Nat Rev Drug Discov, 3, 831-844.  
15109611 P.J.Fuller (2004).
Aldosterone and DNA: the 50th anniversary.
  Trends Endocrinol Metab, 15, 143-146.  
15350600 P.J.Fuller, B.J.Smith, and F.M.Rogerson (2004).
Cortisol resistance in the New World revisited.
  Trends Endocrinol Metab, 15, 296-299.  
15545613 R.Kumar, D.E.Volk, J.Li, J.C.Lee, D.G.Gorenstein, and E.B.Thompson (2004).
TATA box binding protein induces structure in the recombinant glucocorticoid receptor AF1 domain.
  Proc Natl Acad Sci U S A, 101, 16425-16430.  
15105832 Y.Brelivet, S.Kammerer, N.Rochel, O.Poch, and D.Moras (2004).
Signature of the oligomeric behaviour of nuclear receptors at the sequence and structural level.
  EMBO Rep, 5, 423-429.  
12732728 B.D.Nguyen, K.L.Abbott, K.Potempa, M.S.Kobor, J.Archambault, J.Greenblatt, P.Legault, and J.G.Omichinski (2003).
NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase II carboxyl-terminal domain phosphatase FCP1.
  Proc Natl Acad Sci U S A, 100, 5688-5693.
PDB code: 1onv
12612084 B.He, and E.M.Wilson (2003).
Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs.
  Mol Cell Biol, 23, 2135-2150.  
12686538 B.Kauppi, C.Jakob, M.Färnegårdh, J.Yang, H.Ahola, M.Alarcon, K.Calles, O.Engström, J.Harlan, S.Muchmore, A.K.Ramqvist, S.Thorell, L.Ohman, J.Greer, J.A.Gustafsson, J.Carlstedt-Duke, and M.Carlquist (2003).
The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism.
  J Biol Chem, 278, 22748-22754.
PDB codes: 1nhz 1p93
12559765 B.M.Necela, and J.A.Cidlowski (2003).
Crystallization of the human glucocorticoid receptor ligand binding domain: a step towards selective glucocorticoids.
  Trends Pharmacol Sci, 24, 58-61.  
  12682725 F.P.Limbourg, and J.K.Liao (2003).
Nontranscriptional actions of the glucocorticoid receptor.
  J Mol Med, 81, 168-174.  
12902338 G.Li, S.Wang, and T.D.Gelehrter (2003).
Identification of glucocorticoid receptor domains involved in transrepression of transforming growth factor-beta action.
  J Biol Chem, 278, 41779-41788.  
12662475 I.M.Adcock (2003).
Glucocorticoids: new mechanisms and future agents.
  Curr Allergy Asthma Rep, 3, 249-257.  
14617768 I.Rogatsky, J.C.Wang, M.K.Derynck, D.F.Nonaka, D.B.Khodabakhsh, C.M.Haqq, B.D.Darimont, M.J.Garabedian, and K.R.Yamamoto (2003).
Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor.
  Proc Natl Acad Sci U S A, 100, 13845-13850.  
12612067 M.J.Schaaf, and J.A.Cidlowski (2003).
Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity.
  Mol Cell Biol, 23, 1922-1934.  
12773573 M.R.Yudt, C.M.Jewell, R.J.Bienstock, and J.A.Cidlowski (2003).
Molecular origins for the dominant negative function of human glucocorticoid receptor beta.
  Mol Cell Biol, 23, 4319-4330.  
14732928 R.L.Rich, and D.G.Myszka (2003).
A survey of the year 2002 commercial optical biosensor literature.
  J Mol Recognit, 16, 351-382.  
14663148 S.Holmstrom, M.E.Van Antwerp, and J.A.Iñiguez-Lluhi (2003).
Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy.
  Proc Natl Acad Sci U S A, 100, 15758-15763.  
12964159 S.S.Muddana, and B.R.Peterson (2003).
Fluorescent cellular sensors of steroid receptor ligands.
  Chembiochem, 4, 848-855.  
12810720 T.Kodama, N.Shimizu, N.Yoshikawa, Y.Makino, R.Ouchida, K.Okamoto, T.Hisada, H.Nakamura, C.Morimoto, and H.Tanaka (2003).
Role of the glucocorticoid receptor for regulation of hypoxia-dependent gene expression.
  J Biol Chem, 278, 33384-33391.  
12663754 X.Wang, X.Qian, H.C.Guo, and J.Hu (2003).
Heat shock protein 90-independent activation of truncated hepadnavirus reverse transcriptase.
  J Virol, 77, 4471-4480.  
12842037 Y.Li, M.H.Lambert, and H.E.Xu (2003).
Activation of nuclear receptors: a perspective from structural genomics.
  Structure, 11, 741-746.  
12481024 I.Rogatsky, H.F.Luecke, D.C.Leitman, and K.R.Yamamoto (2002).
Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts.
  Proc Natl Acad Sci U S A, 99, 16701-16706.  
12198482 J.C.Young, and F.U.Hartl (2002).
Chaperones and transcriptional regulation by nuclear receptors.
  Nat Struct Biol, 9, 640-642.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.