spacer
spacer

PDBsum entry 1m1c

Go to PDB code: 
protein Protein-protein interface(s) links
Virus PDB id
1m1c

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
651 a.a. *
* Residue conservation analysis
PDB id:
1m1c
Name: Virus
Title: Structure of the l-a virus
Structure: Major coat protein. Chain: a, b. Synonym: gag protein
Source: Saccharomyces cerevisiae virus l-a (l1). Organism_taxid: 11008
Resolution:
3.50Å     R-factor:   0.266     R-free:   0.268
Authors: H.Naitow,J.Tang,M.Canady,R.B.Wickner,J.E.Johnson
Key ref:
H.Naitow et al. (2002). L-A virus at 3.4 A resolution reveals particle architecture and mRNA decapping mechanism. Nat Struct Biol, 9, 725-728. PubMed id: 12244300 DOI: 10.1038/nsb844
Date:
18-Jun-02     Release date:   02-Oct-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P32503  (GAG_SCVLA) -  Major capsid protein from Saccharomyces cerevisiae virus L-A
Seq:
Struc:
 
Seq:
Struc:
680 a.a.
651 a.a.
Key:    PfamA domain  Secondary structure

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nsb844 Nat Struct Biol 9:725-728 (2002)
PubMed id: 12244300  
 
 
L-A virus at 3.4 A resolution reveals particle architecture and mRNA decapping mechanism.
H.Naitow, J.Tang, M.Canady, R.B.Wickner, J.E.Johnson.
 
  ABSTRACT  
 
The structure of the yeast L-A virus was determined by X-ray crystallography at 3.4 A resolution. The L-A dsRNA virus is 400 A in diameter and contains a single protein shell of 60 asymmetric dimers of the coat protein, a feature common among the inner protein shells of dsRNA viruses and probably related to their unique mode of transcription and replication. The two identical subunits in each dimer are in non-equivalent environments and show substantially different conformations in specific surface regions. The L-A virus decaps cellular mRNA to efficiently translate its own uncapped mRNA. Our structure reveals a trench at the active site of the decapping reaction and suggests a role for nearby residues in the reaction.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. A region of the electron density map is shown fit with residues 106 -114 (Ser-His-Ala-Tyr-Asn-Ile-Thr-Ser-Trp).
Figure 4.
Figure 4. A stereo view close-up of the trench showing residue His 154 and its neighboring residues around the active site. Residues Tyr 150, His 151, Asp 152, Tyr 452, Tyr 538 and Asp 540 all may contribute to the mRNA decapping reaction. The four loops corresponding to loop 1, 2, 3 and 4, are colored in red, green, blue and pink, respectively.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2002, 9, 725-728) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20463071 D.Luque, J.M.González, D.Garriga, S.A.Ghabrial, W.M.Havens, B.Trus, N.Verdaguer, J.L.Carrascosa, and J.R.Castón (2010).
The T=1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication.
  J Virol, 84, 7256-7266.  
20067611 E.V.Koonin (2010).
Taming of the shrewd: novel eukaryotic genes from RNA viruses.
  BMC Biol, 8, 2.  
20036256 L.Cheng, J.Zhu, W.H.Hui, X.Zhang, B.Honig, Q.Fang, and Z.H.Zhou (2010).
Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics.
  J Mol Biol, 397, 852-863.
PDB code: 3k1q
20661480 Y.J.Tao, and Q.Ye (2010).
RNA virus replication complexes.
  PLoS Pathog, 6, e1000943.  
20021636 D.J.Taylor, and J.Bruenn (2009).
The evolution of novel fungal genes from non-retroviral RNA viruses.
  BMC Biol, 7, 88.  
19246376 J.Pan, L.Dong, L.Lin, W.F.Ochoa, R.S.Sinkovits, W.M.Havens, M.L.Nibert, T.S.Baker, S.A.Ghabrial, and Y.J.Tao (2009).
Atomic structure reveals the unique capsid organization of a dsRNA virus.
  Proc Natl Acad Sci U S A, 106, 4225-4230.
PDB codes: 3es5 3esg
19587059 M.Jalasvuori, S.T.Jaatinen, S.Laurinavicius, E.Ahola-Iivarinen, N.Kalkkinen, D.H.Bamford, and J.K.Bamford (2009).
The closest relatives of icosahedral viruses of thermophilic bacteria are among viruses and plasmids of the halophilic archaea.
  J Virol, 83, 9388-9397.  
19107323 S.A.Ghabrial, and M.L.Nibert (2009).
Victorivirus, a new genus of fungal viruses in the family Totiviridae.
  Arch Virol, 154, 373-379.  
19400634 S.A.Ghabrial, and N.Suzuki (2009).
Viruses of plant pathogenic fungi.
  Annu Rev Phytopathol, 47, 353-384.  
20365004 S.B.Rochal, and V.L.Lorman (2009).
Theory of a reconstructive structural transformation in capsids of icosahedral viruses.
  Phys Rev E Stat Nonlin Soft Matter Phys, 80, 051905.  
19407816 S.Duquerroy, B.Da Costa, C.Henry, A.Vigouroux, S.Libersou, J.Lepault, J.Navaza, B.Delmas, and F.A.Rey (2009).
The picobirnavirus crystal structure provides functional insights into virion assembly and cell entry.
  EMBO J, 28, 1655-1665.
PDB code: 2vf1
18025047 D.Gunawardana, H.C.Cheng, and K.R.Gayler (2008).
Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2).
  Nucleic Acids Res, 36, 203-216.  
18485736 J.E.Johnson (2008).
Multi-disciplinary studies of viruses: the role of structure in shaping the questions and answers.
  J Struct Biol, 163, 246-253.  
18981418 J.Tang, W.F.Ochoa, R.S.Sinkovits, B.T.Poulos, S.A.Ghabrial, D.V.Lightner, T.S.Baker, and M.L.Nibert (2008).
Infectious myonecrosis virus has a totivirus-like, 120-subunit capsid, but with fiber complexes at the fivefold axes.
  Proc Natl Acad Sci U S A, 105, 17526-17531.  
18787002 N.Miyazaki, T.Uehara-Ichiki, L.Xing, L.Bergman, A.Higashiura, A.Nakagawa, T.Omura, and R.H.Cheng (2008).
Structural evolution of reoviridae revealed by oryzavirus in acquiring the second capsid shell.
  J Virol, 82, 11344-11353.  
18462682 W.F.Ochoa, W.M.Havens, R.S.Sinkovits, M.L.Nibert, S.A.Ghabrial, and T.S.Baker (2008).
Partitivirus structure reveals a 120-subunit, helix-rich capsid with distinctive surface arches formed by quasisymmetric coat-protein dimers.
  Structure, 16, 776-786.  
17476337 F.Powilleit, T.Breinig, and M.J.Schmitt (2007).
Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.
  PLoS ONE, 2, e415.  
17292834 H.T.Jäälinoja, J.T.Huiskonen, and S.J.Butcher (2007).
Electron cryomicroscopy comparison of the architectures of the enveloped bacteriophages phi6 and phi8.
  Structure, 15, 157-167.  
17501583 V.L.Lorman, and S.B.Rochal (2007).
Density-wave theory of the capsid structure of small icosahedral viruses.
  Phys Rev Lett, 98, 185502.  
16943288 C.R.Bourne, M.G.Finn, and A.Zlotnick (2006).
Global structural changes in hepatitis B virus capsids induced by the assembly effector HAP1.
  J Virol, 80, 11055-11061.
PDB codes: 2g33 2g34
16765897 J.T.Huiskonen, F.de Haas, D.Bubeck, D.H.Bamford, S.D.Fuller, and S.J.Butcher (2006).
Structure of the bacteriophage phi6 nucleocapsid suggests a mechanism for sequential RNA packaging.
  Structure, 14, 1039-1048.  
16489348 M.J.Schmitt, and F.Breinig (2006).
Yeast viral killer toxins: lethality and self-protection.
  Nat Rev Microbiol, 4, 212-221.  
16193532 A.Zlotnick (2005).
Theoretical aspects of virus capsid assembly.
  J Mol Recognit, 18, 479-490.  
16081736 C.A.Kerfeld, M.R.Sawaya, S.Tanaka, C.V.Nguyen, M.Phillips, M.Beeby, and T.O.Yeates (2005).
Protein structures forming the shell of primitive bacterial organelles.
  Science, 309, 936-938.
PDB codes: 2a10 2a18 2a1b
15558545 C.M.Shepherd, and V.S.Reddy (2005).
Extent of protein-protein interactions and quasi-equivalence in viral capsids.
  Proteins, 58, 472-477.  
15797378 F.Coulibaly, C.Chevalier, I.Gutsche, J.Pous, J.Navaza, S.Bressanelli, B.Delmas, and F.A.Rey (2005).
The birnavirus crystal structure reveals structural relationships among icosahedral viruses.
  Cell, 120, 761-772.
PDB codes: 1wcd 1wce
15597333 J.Tang, H.Naitow, N.A.Gardner, A.Kolesar, L.Tang, R.B.Wickner, and J.E.Johnson (2005).
The structural basis of recognition and removal of cellular mRNA 7-methyl G 'caps' by a viral capsid protein: a unique viral response to host defense.
  J Mol Recognit, 18, 158-168.  
15964268 P.Ahlquist (2005).
Virus evolution: fitting lifestyles to a T.
  Curr Biol, 15, R465-R467.  
16140524 W.Jiang, and S.J.Ludtke (2005).
Electron cryomicroscopy of single particles at subnanometer resolution.
  Curr Opin Struct Biol, 15, 571-577.  
15254177 E.L.Nason, R.Rothagel, S.K.Mukherjee, A.K.Kar, M.Forzan, B.V.Prasad, and P.Roy (2004).
Interactions between the inner and outer capsids of bluetongue virus.
  J Virol, 78, 8059-8067.  
15064363 J.L.Chong, R.Y.Chuang, L.Tung, and T.H.Chang (2004).
Ded1p, a conserved DExD/H-box translation factor, can promote yeast L-A virus negative-strand RNA synthesis in vitro.
  Nucleic Acids Res, 32, 2031-2038.  
15362228 N.Cougot, E.van Dijk, S.Babajko, and B.Séraphin (2004).
'Cap-tabolism'.
  Trends Biochem Sci, 29, 436-444.  
14563876 X.Qiao, J.Qiao, and L.Mindich (2003).
Analysis of specific binding involved in genomic packaging of the double-stranded-RNA bacteriophage phi6.
  J Bacteriol, 185, 6409-6414.  
12352950 K.M.Reinisch (2002).
The dsRNA Viridae and their catalytic capsids.
  Nat Struct Biol, 9, 714-716.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer