spacer
spacer

PDBsum entry 1ltl

Go to PDB code: 
protein metals Protein-protein interface(s) links
Replication PDB id
1ltl
Jmol
Contents
Protein chains
(+ 0 more) 239 a.a. *
Metals
_ZN ×6
* Residue conservation analysis
PDB id:
1ltl
Name: Replication
Title: The dodecamer structure of mcm from archaeal m. Thermoautotrophicum
Structure: DNA replication initiator (cdc21/cdc54). Chain: a, b, c, d, e, f. Engineered: yes
Source: Methanothermobacter thermautotrophicus. Organism_taxid: 145262. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dodecamer (from PQS)
Resolution:
3.00Å     R-factor:   0.245     R-free:   0.295
Authors: R.J.Fletcher,B.E.Bishop,R.P.Leon,R.A.Sclafani,C.M.Ogata, X.S.Chen
Key ref:
R.J.Fletcher et al. (2003). The structure and function of MCM from archaeal M. Thermoautotrophicum. Nat Struct Biol, 10, 160-167. PubMed id: 12548282 DOI: 10.1038/nsb893
Date:
20-May-02     Release date:   27-May-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
O27798  (O27798_METTH) -  DNA replication initiator (Cdc21/Cdc54)
Seq:
Struc:
 
Seq:
Struc:
666 a.a.
239 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     DNA replication   1 term 
  Biochemical function     DNA binding     2 terms  

 

 
DOI no: 10.1038/nsb893 Nat Struct Biol 10:160-167 (2003)
PubMed id: 12548282  
 
 
The structure and function of MCM from archaeal M. Thermoautotrophicum.
R.J.Fletcher, B.E.Bishop, R.P.Leon, R.A.Sclafani, C.M.Ogata, X.S.Chen.
 
  ABSTRACT  
 
Eukaryotic chromosomal DNA is licensed for replication precisely once in each cell cycle. The mini-chromosome maintenance (MCM) complex plays a role in this replication licensing. We have determined the structure of a fragment of MCM from Methanobacterium thermoautotrophicum (mtMCM), a model system for eukaryotic MCM. The structure reveals a novel dodecameric architecture with a remarkably long central channel. The channel surface has an unusually high positive charge and binds DNA. We also show that the structure of the N-terminal fragment is conserved for all MCMs proteins despite highly divergent sequences, suggesting a common architecture for a similar task: gripping/remodeling DNA and regulating MCM activity. An mtMCM mutant protein equivalent to a yeast MCM5 (CDC46) protein with the bob1 mutation at its N terminus has only subtle structural changes, suggesting a Cdc7-bypass mechanism by Bob1 in yeast. Yeast bypass experiments using MCM5 mutant proteins support the hypothesis for the bypass mechanism.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Overall structure of double-hexamer of N-mtMCM. a, Side view of the double-hexamer structure. Each monomer is represented by a discrete color. The -helices are represented by cylinders; and -strands, by arrows. The 12 Zn atoms (magenta) are located in the middle of the double hexamer, mediating hexamer -hexamer interactions. The figure was generated with MolScript44. b, A surface representation of the double hexamer, showing a dumbbell-like shape. The figure was generated with GRASP45. c, The packing of the double hexamers in the crystal, viewed along the two-fold and normal to the three-fold crystallographic axis. Three consecutive double hexamers (in blue, magenta and green) are stacked end-to-end against each other.
Figure 6.
Figure 6. Yeast bypass results of mutations of MCM5 at Pro83 supporting the domain-push hypothesis for bob1 bypass mechanism. a, Cells of S. cerevisiae strain 302 with cdc7ts containing either wild type or mutant alleles of MCM5 were diluted serially from 10^0 to 10^-4 (right to left), placed on YPD plates (see Methods) and then incubated at either permissive (22 C) or non-permissive (36 C) temperature for 2 d. b, Summary of results. Yes indicates growth and No means no growth at the indicated temperature. *Bypass occurs when cdc7ts cells grow at 36 C.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2003, 10, 160-167) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21378962 A.Costa, I.Ilves, N.Tamberg, T.Petojevic, E.Nogales, M.R.Botchan, and J.M.Berger (2011).
The structural basis for MCM2-7 helicase activation by GINS and Cdc45.
  Nat Struct Mol Biol, 18, 471-477.  
21274582 N.Sakakibara, R.Kasiviswanathan, and Z.Kelman (2011).
Mutational analysis of conserved aspartic acid residues in the Methanothermobacter thermautotrophicus MCM helicase.
  Extremophiles, 15, 245-252.  
21265766 S.A.MacNeill (2011).
Protein-protein interactions in the archaeal core replisome.
  Biochem Soc Trans, 39, 163-168.  
20799962 A.M.Locovei, L.Yin, and G.D'Urso (2010).
A genetic screen for replication initiation defective (rid) mutants in Schizosaccharomyces pombe.
  Cell Div, 5, 20.  
20716382 A.S.Brewster, I.M.Slaymaker, S.A.Afif, and X.S.Chen (2010).
Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding.
  BMC Mol Biol, 11, 62.  
20441442 A.S.Brewster, and X.S.Chen (2010).
Insights into the MCM functional mechanism: lessons learned from the archaeal MCM complex.
  Crit Rev Biochem Mol Biol, 45, 243-256.  
  20838603 C.H.Chuang, M.D.Wallace, C.Abratte, T.Southard, and J.C.Schimenti (2010).
Incremental genetic perturbations to MCM2-7 expression and subcellular distribution reveal exquisite sensitivity of mice to DNA replication stress.
  PLoS Genet, 6, 0.  
20373915 H.Masai, S.Matsumoto, Z.You, N.Yoshizawa-Sugata, and M.Oda (2010).
Eukaryotic chromosome DNA replication: where, when, and how?
  Annu Rev Biochem, 79, 89.  
20512115 H.Walbott, S.Mouffok, R.Capeyrou, S.Lebaron, O.Humbert, H.van Tilbeurgh, Y.Henry, and N.Leulliot (2010).
Prp43p contains a processive helicase structural architecture with a specific regulatory domain.
  EMBO J, 29, 2194-2204.
PDB code: 2xau
21145490 H.Yardimci, A.B.Loveland, S.Habuchi, A.M.van Oijen, and J.C.Walter (2010).
Uncoupling of sister replisomes during eukaryotic DNA replication.
  Mol Cell, 40, 834-840.  
20223218 J.Lundqvist, H.Elmlund, R.P.Wulff, L.Berglund, D.Elmlund, C.Emanuelsson, H.Hebert, R.D.Willows, M.Hansson, M.Lindahl, and S.Al-Karadaghi (2010).
ATP-induced conformational dynamics in the AAA+ motor unit of magnesium chelatase.
  Structure, 18, 354-365.
PDB code: 2x31
20130681 K.L.Cheung, J.Huen, W.A.Houry, and J.Ortega (2010).
Comparison of the multiple oligomeric structures observed for the Rvb1 and Rvb2 proteins.
  Biochem Cell Biol, 88, 77-88.  
20551170 K.Labib (2010).
How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?
  Genes Dev, 24, 1208-1219.  
19634988 M.A.Wouters, S.W.Fan, and N.L.Haworth (2010).
Disulfides as redox switches: from molecular mechanisms to functional significance.
  Antioxid Redox Signal, 12, 53-91.  
20581330 M.Krupovic, S.Gribaldo, D.H.Bamford, and P.Forterre (2010).
The evolutionary history of archaeal MCM helicases: a case study of vertical evolution combined with hitchhiking of mobile genetic elements.
  Mol Biol Evol, 27, 2716-2732.  
  20944206 S.S.Krishna, L.Aravind, C.Bakolitsa, J.Caruthers, D.Carlton, M.D.Miller, P.Abdubek, T.Astakhova, H.L.Axelrod, H.J.Chiu, T.Clayton, M.C.Deller, L.Duan, J.Feuerhelm, J.C.Grant, G.W.Han, L.Jaroszewski, K.K.Jin, H.E.Klock, M.W.Knuth, A.Kumar, D.Marciano, D.McMullan, A.T.Morse, E.Nigoghossian, L.Okach, R.Reyes, C.L.Rife, H.van den Bedem, D.Weekes, Q.Xu, K.O.Hodgson, J.Wooley, M.A.Elsliger, A.M.Deacon, A.Godzik, S.A.Lesley, and I.A.Wilson (2010).
The structure of SSO2064, the first representative of Pfam family PF01796, reveals a novel two-domain zinc-ribbon OB-fold architecture with a potential acyl-CoA-binding role.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 1160-1166.
PDB code: 3irb
19217392 B.Bae, Y.H.Chen, A.Costa, S.Onesti, J.S.Brunzelle, Y.Lin, I.K.Cann, and S.K.Nair (2009).
Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog.
  Structure, 17, 211-222.
PDB code: 3f8t
19910535 C.Evrin, P.Clarke, J.Zech, R.Lurz, J.Sun, S.Uhle, H.Li, B.Stillman, and C.Speck (2009).
A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication.
  Proc Natl Acad Sci U S A, 106, 20240-20245.  
19896182 D.Remus, F.Beuron, G.Tolun, J.D.Griffith, E.P.Morris, and J.F.Diffley (2009).
Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing.
  Cell, 139, 719-730.  
19101707 E.Fanning, and K.Zhao (2009).
SV40 DNA replication: from the A gene to a nanomachine.
  Virology, 384, 352-359.  
19164574 E.R.Barry, J.E.Lovett, A.Costa, S.M.Lea, and S.D.Bell (2009).
Intersubunit allosteric communication mediated by a conserved loop in the MCM helicase.
  Proc Natl Acad Sci U S A, 106, 1051-1056.  
19116205 E.R.Jenkinson, A.Costa, A.P.Leech, A.Patwardhan, S.Onesti, and J.P.Chong (2009).
Mutations in Subdomain B of the Minichromosome Maintenance (MCM) Helicase Affect DNA Binding and Modulate Conformational Transitions.
  J Biol Chem, 284, 5654-5661.  
19002376 G.T.Haugland, C.R.Rollor, N.K.Birkeland, and Z.Kelman (2009).
Biochemical characterization of the minichromosome maintenance protein from the archaeon Thermoplasma acidophilum.
  Extremophiles, 13, 81-88.  
19692334 I.Bruck, and D.Kaplan (2009).
Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth.
  J Biol Chem, 284, 28823-28831.  
19001412 J.H.Shin, G.Y.Heo, and Z.Kelman (2009).
The Methanothermobacter thermautotrophicus MCM Helicase Is Active as a Hexameric Ring.
  J Biol Chem, 284, 540-546.  
19946136 M.L.Bochman, and A.Schwacha (2009).
The Mcm complex: unwinding the mechanism of a replicative helicase.
  Microbiol Mol Biol Rev, 73, 652-683.  
19474351 M.Samuels, G.Gulati, J.H.Shin, R.Opara, E.McSweeney, M.Sekedat, S.Long, Z.Kelman, and D.Jeruzalmi (2009).
A biochemically active MCM-like helicase in Bacillus cereus.
  Nucleic Acids Res, 37, 4441-4452.  
19415794 N.Sakakibara, L.M.Kelman, and Z.Kelman (2009).
Unwinding the structure and function of the archaeal MCM helicase.
  Mol Microbiol, 72, 286-296.  
18650940 A.Costa, G.van Duinen, B.Medagli, J.Chong, N.Sakakibara, Z.Kelman, S.K.Nair, A.Patwardhan, and S.Onesti (2008).
Cryo-electron microscopy reveals a novel DNA-binding site on the MCM helicase.
  EMBO J, 27, 2250-2258.  
19073923 A.S.Brewster, G.Wang, X.Yu, W.B.Greenleaf, J.M.Carazo, M.Tjajadia, M.G.Klein, and X.S.Chen (2008).
Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase.
  Proc Natl Acad Sci U S A, 105, 20191-20196.
PDB code: 3f9v
18329872 E.J.Enemark, and L.Joshua-Tor (2008).
On helicases and other motor proteins.
  Curr Opin Struct Biol, 18, 243-257.  
19081065 E.M.Warren, S.Vaithiyalingam, J.Haworth, B.Greer, A.K.Bielinsky, W.J.Chazin, and B.F.Eichman (2008).
Structural basis for DNA binding by replication initiator Mcm10.
  Structure, 16, 1892-1901.
PDB code: 3ebe
18657510 M.L.Bochman, and A.Schwacha (2008).
The Mcm2-7 complex has in vitro helicase activity.
  Mol Cell, 31, 287-293.  
18753627 N.Nitani, C.Yadani, H.Yabuuchi, H.Masukata, and T.Nakagawa (2008).
Mcm4 C-terminal domain of MCM helicase prevents excessive formation of single-stranded DNA at stalled replication forks.
  Proc Natl Acad Sci U S A, 105, 12973-12978.  
18184696 N.Sakakibara, R.Kasiviswanathan, E.Melamud, M.Han, F.P.Schwarz, and Z.Kelman (2008).
Coupling of DNA binding and helicase activity is mediated by a conserved loop in the MCM protein.
  Nucleic Acids Res, 36, 1309-1320.  
18754676 R.J.Fletcher, J.Shen, L.G.Holden, and X.S.Chen (2008).
Identification of amino acids important for the biochemical activity of Methanothermobacter thermautotrophicus MCM.
  Biochemistry, 47, 9981-9986.  
18660534 R.P.Leon, M.Tecklenburg, and R.A.Sclafani (2008).
Functional conservation of beta-hairpin DNA binding domains in the Mcm protein of Methanobacterium thermoautotrophicum and the Mcm5 protein of Saccharomyces cerevisiae.
  Genetics, 179, 1757-1768.  
17986447 T.Yoshimochi, R.Fujikane, M.Kawanami, F.Matsunaga, and Y.Ishino (2008).
The GINS complex from Pyrococcus furiosus stimulates the MCM helicase activity.
  J Biol Chem, 283, 1601-1609.  
18400864 W.B.Greenleaf, J.Shen, D.Gai, and X.S.Chen (2008).
Systematic study of the functions for the residues around the nucleotide pocket in simian virus 40 AAA+ hexameric helicase.
  J Virol, 82, 6017-6023.  
18417534 W.Liu, B.Pucci, M.Rossi, F.M.Pisani, and R.Ladenstein (2008).
Structural analysis of the Sulfolobus solfataricus MCM protein N-terminal domain.
  Nucleic Acids Res, 36, 3235-3243.
PDB code: 2vl6
17823614 A.L.Okorokov, A.Waugh, J.Hodgkinson, A.Murthy, H.K.Hong, E.Leo, M.B.Sherman, K.Stoeber, E.V.Orlova, and G.H.Williams (2007).
Hexameric ring structure of human MCM10 DNA replication factor.
  EMBO Rep, 8, 925-930.  
17337732 B.Pucci, M.De Felice, M.Rocco, F.Esposito, M.De Falco, L.Esposito, M.Rossi, and F.M.Pisani (2007).
Modular organization of the Sulfolobus solfataricus mini-chromosome maintenance protein.
  J Biol Chem, 282, 12574-12582.  
17259218 E.R.Barry, A.T.McGeoch, Z.Kelman, and S.D.Bell (2007).
Archaeal MCM has separable processivity, substrate choice and helicase domains.
  Nucleic Acids Res, 35, 988-998.  
17884823 E.Rothenberg, M.A.Trakselis, S.D.Bell, and T.Ha (2007).
MCM forked substrate specificity involves dynamic interaction with the 5'-tail.
  J Biol Chem, 282, 34229-34234.  
17895243 M.L.Bochman, and A.Schwacha (2007).
Differences in the single-stranded DNA binding activities of MCM2-7 and MCM467: MCM2 and MCM5 define a slow ATP-dependent step.
  J Biol Chem, 282, 33795-33804.  
17724082 M.L.Hoang, R.P.Leon, L.Pessoa-Brandao, S.Hunt, M.K.Raghuraman, W.L.Fangman, B.J.Brewer, and R.A.Sclafani (2007).
Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae.
  Mol Cell Biol, 27, 7594-7602.  
17506634 M.R.Singleton, M.S.Dillingham, and D.B.Wigley (2007).
Structure and mechanism of helicases and nucleic acid translocases.
  Annu Rev Biochem, 76, 23-50.  
17143284 N.Shima, A.Alcaraz, I.Liachko, T.R.Buske, C.A.Andrews, R.J.Munroe, S.A.Hartford, B.K.Tye, and J.C.Schimenti (2007).
A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice.
  Nat Genet, 39, 93-98.  
17630848 R.A.Sclafani, and T.M.Holzen (2007).
Cell cycle regulation of DNA replication.
  Annu Rev Genet, 41, 237-280.  
17324440 T.D.Ziebarth, C.L.Farr, and L.S.Kaguni (2007).
Modular architecture of the hexameric human mitochondrial DNA helicase.
  J Mol Biol, 367, 1382-1391.  
17386260 X.Liu, S.Schuck, and A.Stenlund (2007).
Adjacent residues in the E1 initiator beta-hairpin define different roles of the beta-hairpin in Ori melting, helicase loading, and helicase activity.
  Mol Cell, 25, 825-837.  
17062628 A.Costa, T.Pape, M.van Heel, P.Brick, A.Patwardhan, and S.Onesti (2006).
Structural basis of the Methanothermobacter thermautotrophicus MCM helicase activity.
  Nucleic Acids Res, 34, 5829-5838.  
17158702 E.R.Barry, and S.D.Bell (2006).
DNA replication in the archaea.
  Microbiol Mol Biol Rev, 70, 876-887.  
16679413 E.R.Jenkinson, and J.P.Chong (2006).
Minichromosome maintenance helicase activity is controlled by N- and C-terminal motifs and requires the ATPase domain helix-2 insert.
  Proc Natl Acad Sci U S A, 103, 7613-7618.  
17046832 H.Masai, C.Taniyama, K.Ogino, E.Matsui, N.Kakusho, S.Matsumoto, J.M.Kim, A.Ishii, T.Tanaka, T.Kobayashi, K.Tamai, K.Ohtani, and K.Arai (2006).
Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin.
  J Biol Chem, 281, 39249-39261.  
16935878 M.N.Nedelcheva-Veleva, D.B.Krastev, and S.S.Stoynov (2006).
Coordination of DNA synthesis and replicative unwinding by the S-phase checkpoint pathways.
  Nucleic Acids Res, 34, 4138-4146.  
17060327 P.M.Matias, S.Gorynia, P.Donner, and M.A.Carrondo (2006).
Crystal structure of the human AAA+ protein RuvBL1.
  J Biol Chem, 281, 38918-38929.
PDB code: 2c9o
16816422 P.R.Dohrmann, and R.A.Sclafani (2006).
Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
  Genetics, 174, 87-99.  
16740965 R.Kasiviswanathan, J.H.Shin, and Z.Kelman (2006).
DNA binding by the Methanothermobacter thermautotrophicus Cdc6 protein is inhibited by the minichromosome maintenance helicase.
  J Bacteriol, 188, 4577-4580.  
16873064 S.L.Reck-Peterson, A.Yildiz, A.P.Carter, A.Gennerich, N.Zhang, and R.D.Vale (2006).
Single-molecule analysis of dynein processivity and stepping behavior.
  Cell, 126, 335-348.  
16497662 S.Waga, and A.Zembutsu (2006).
Dynamics of DNA binding of replication initiation proteins during de novo formation of pre-replicative complexes in Xenopus egg extracts.
  J Biol Chem, 281, 10926-10934.  
16916635 T.H.Massey, C.P.Mercogliano, J.Yates, D.J.Sherratt, and J.Löwe (2006).
Double-stranded DNA translocation: structure and mechanism of hexameric FtsK.
  Mol Cell, 23, 457-469.
PDB codes: 2ius 2iut 2iuu
16899510 T.Tsuji, S.B.Ficarro, and W.Jiang (2006).
Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells.
  Mol Biol Cell, 17, 4459-4472.  
16951253 W.Lilyestrom, M.G.Klein, R.Zhang, A.Joachimiak, and X.S.Chen (2006).
Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor.
  Genes Dev, 20, 2373-2382.
PDB code: 2h1l
17067396 W.Xu, J.G.Aparicio, O.M.Aparicio, and S.Tavaré (2006).
Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae.
  BMC Genomics, 7, 276.  
15716458 A.I.Majerník, M.Lundgren, P.McDermott, R.Bernander, and J.P.Chong (2005).
DNA content and nucleoid distribution in Methanothermobacter thermautotrophicus.
  J Bacteriol, 187, 1856-1858.  
15952889 A.Johnson, and M.O'Donnell (2005).
Cellular DNA replicases: components and dynamics at the replication fork.
  Annu Rev Biochem, 74, 283-315.  
16116441 A.T.McGeoch, M.A.Trakselis, R.A.Laskey, and S.D.Bell (2005).
Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism.
  Nat Struct Mol Biol, 12, 756-762.  
16228006 C.Speck, Z.Chen, H.Li, and B.Stillman (2005).
ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA.
  Nat Struct Mol Biol, 12, 965-971.  
16369567 C.Y.Ying, and J.Gautier (2005).
The ATPase activity of MCM2-7 is dispensable for pre-RC assembly but is required for DNA unwinding.
  EMBO J, 24, 4334-4344.  
15753098 D.H.Shin, N.Oganesyan, J.Jancarik, H.Yokota, R.Kim, and S.H.Kim (2005).
Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum.
  J Biol Chem, 280, 18326-18335.
PDB codes: 1ytd 1yte 1ytk 2i1o
15838518 D.Y.Takeda, and A.Dutta (2005).
DNA replication and progression through S phase.
  Oncogene, 24, 2827-2843.  
15928711 J.J.Blow, and A.Dutta (2005).
Preventing re-replication of chromosomal DNA.
  Nat Rev Mol Cell Biol, 6, 476-486.  
16264427 J.J.Blow, and T.U.Tanaka (2005).
The chromosome cycle: coordinating replication and segregation. Second in the cycles review series.
  EMBO Rep, 6, 1028-1034.  
16142223 J.P.Chong (2005).
Learning to unwind.
  Nat Struct Mol Biol, 12, 734-736.  
16061814 J.Shen, D.Gai, A.Patrick, W.B.Greenleaf, and X.S.Chen (2005).
The roles of the residues on the channel beta-hairpin and loop structures of simian virus 40 hexameric helicase.
  Proc Natl Acad Sci U S A, 102, 11248-11253.  
16221679 R.J.Fletcher, J.Shen, Y.Gómez-Llorente, C.S.Martín, J.M.Carazo, and X.S.Chen (2005).
Double hexamer disruption and biochemical activities of Methanobacterium thermoautotrophicum MCM.
  J Biol Chem, 280, 42405-42410.  
16150924 R.Kasiviswanathan, J.H.Shin, and Z.Kelman (2005).
Interactions between the archaeal Cdc6 and MCM proteins modulate their biochemical properties.
  Nucleic Acids Res, 33, 4940-4950.  
16285920 S.Schuck, and A.Stenlund (2005).
Assembly of a double hexameric helicase.
  Mol Cell, 20, 377-389.  
16002295 T.S.Takahashi, D.B.Wigley, and J.C.Walter (2005).
Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase.
  Trends Biochem Sci, 30, 437-444.  
16221680 Y.Gómez-Llorente, R.J.Fletcher, X.S.Chen, J.M.Carazo, and C.San Martín (2005).
Polymorphism and double hexamer structure in the archaeal minichromosome maintenance (MCM) helicase from Methanobacterium thermoautotrophicum.
  J Biol Chem, 280, 40909-40915.  
16242991 Z.Kelman, and M.F.White (2005).
Archaeal DNA replication and repair.
  Curr Opin Microbiol, 8, 669-676.  
15917436 Z.You, and H.Masai (2005).
DNA binding and helicase actions of mouse MCM4/6/7 helicase.
  Nucleic Acids Res, 33, 3033-3047.  
15371413 B.Pucci, M.De Felice, M.Rossi, S.Onesti, and F.M.Pisani (2004).
Amino acids of the Sulfolobus solfataricus mini-chromosome maintenance-like DNA helicase involved in DNA binding/remodeling.
  J Biol Chem, 279, 49222-49228.  
15454080 D.Gai, R.Zhao, D.Li, C.V.Finkielstein, and X.S.Chen (2004).
Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen.
  Cell, 119, 47-60.
PDB codes: 1svl 1svm 1svo
15326181 D.Shechter, C.Y.Ying, and J.Gautier (2004).
DNA unwinding is an Mcm complex-dependent and ATP hydrolysis-dependent process.
  J Biol Chem, 279, 45586-45593.  
15369673 E.J.Mancini, D.E.Kainov, J.M.Grimes, R.Tuma, D.H.Bamford, and D.I.Stuart (2004).
Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation.
  Cell, 118, 743-755.
PDB codes: 1w44 1w46 1w47 1w48 1w49 1w4a 1w4b 1w4c
15610739 J.L.Bowers, J.C.Randell, S.Chen, and S.P.Bell (2004).
ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication.
  Mol Cell, 16, 967-978.  
15292191 M.De Felice, L.Esposito, B.Pucci, M.De Falco, M.Rossi, and F.M.Pisani (2004).
A CDC6-like factor from the archaea Sulfolobus solfataricus promotes binding of the mini-chromosome maintenance complex to DNA.
  J Biol Chem, 279, 43008-43012.  
15096526 M.Oehlmann, A.J.Score, and J.J.Blow (2004).
The role of Cdc6 in ensuring complete genome licensing and S phase checkpoint activation.
  J Cell Biol, 165, 181-190.  
15329670 M.Pacek, and J.C.Walter (2004).
A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication.
  EMBO J, 23, 3667-3676.  
15342486 R.A.Sclafani, R.J.Fletcher, and X.S.Chen (2004).
Two heads are better than one: regulation of DNA replication by hexameric helicases.
  Genes Dev, 18, 2039-2045.  
15100218 R.Kasiviswanathan, J.H.Shin, E.Melamud, and Z.Kelman (2004).
Biochemical characterization of the Methanothermobacter thermautotrophicus minichromosome maintenance (MCM) helicase N-terminal domains.
  J Biol Chem, 279, 28358-28366.  
15065651 S.G.Prasanth, J.Méndez, K.V.Prasanth, and B.Stillman (2004).
Dynamics of pre-replication complex proteins during the cell division cycle.
  Philos Trans R Soc Lond B Biol Sci, 359, 7.  
15007098 S.L.Forsburg (2004).
Eukaryotic MCM proteins: beyond replication initiation.
  Microbiol Mol Biol Rev, 68, 109-131.  
15031713 T.H.Massey, L.Aussel, F.X.Barre, and D.J.Sherratt (2004).
Asymmetric activation of Xer site-specific recombination by FtsK.
  EMBO Rep, 5, 399-404.  
15194812 Y.Yamada, T.Nakagawa, and H.Masukata (2004).
A novel intermediate in initiation complex assembly for fission yeast DNA replication.
  Mol Biol Cell, 15, 3740-3750.  
14527289 B.Grabowski, and Z.Kelman (2003).
Archeal DNA replication: eukaryal proteins in a bacterial context.
  Annu Rev Microbiol, 57, 487-516.  
12844493 C.R.Cook, G.Kung, F.C.Peterson, B.F.Volkman, and M.Lei (2003).
A novel zinc finger is required for Mcm10 homocomplex assembly.
  J Biol Chem, 278, 36051-36058.  
13679365 D.L.Kaplan, M.J.Davey, and M.O'Donnell (2003).
Mcm4,6,7 uses a "pump in ring" mechanism to unwind DNA by steric exclusion and actively translocate along a duplex.
  J Biol Chem, 278, 49171-49182.  
12774115 D.Li, R.Zhao, W.Lilyestrom, D.Gai, R.Zhang, J.A.DeCaprio, E.Fanning, A.Jochimiak, G.Szakonyi, and X.S.Chen (2003).
Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen.
  Nature, 423, 512-518.
PDB code: 1n25
12907732 I.Grainge, S.Scaife, and D.B.Wigley (2003).
Biochemical analysis of components of the pre-replication complex of Archaeoglobus fulgidus.
  Nucleic Acids Res, 31, 4888-4898.  
12906833 J.A.James, C.R.Escalante, M.Yoon-Robarts, T.A.Edwards, R.M.Linden, and A.K.Aggarwal (2003).
Crystal structure of the SF3 helicase from adeno-associated virus type 2.
  Structure, 11, 1025-1035.
PDB code: 1s9h
12837750 J.H.Shin, B.Grabowski, R.Kasiviswanathan, S.D.Bell, and Z.Kelman (2003).
Regulation of minichromosome maintenance helicase activity by Cdc6.
  J Biol Chem, 278, 38059-38067.  
12975364 J.H.Shin, Y.Jiang, B.Grabowski, J.Hurwitz, and Z.Kelman (2003).
Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases.
  J Biol Chem, 278, 49053-49062.  
14633980 M.G.Gomez-Lorenzo, M.Valle, J.Frank, C.Gruss, C.O.Sorzano, X.S.Chen, L.E.Donate, and J.M.Carazo (2003).
Large T antigen on the simian virus 40 origin of replication: a 3D snapshot prior to DNA replication.
  EMBO J, 22, 6205-6213.  
12906810 M.J.Davey, and M.O'Donnell (2003).
Replicative helicase loaders: ring breakers and ring makers.
  Curr Biol, 13, R594-R596.  
14566326 T.Pape, H.Meka, S.Chen, G.Vicentini, M.van Heel, and S.Onesti (2003).
Hexameric ring structure of the full-length archaeal MCM protein complex.
  EMBO Rep, 4, 1079-1083.  
12605215 Z.Kelman, and J.Hurwitz (2003).
Structural lessons in DNA replication from the third domain of life.
  Nat Struct Biol, 10, 148-150.  
14609960 Z.You, Y.Ishimi, T.Mizuno, K.Sugasawa, F.Hanaoka, and H.Masai (2003).
Thymine-rich single-stranded DNA activates Mcm4/6/7 helicase on Y-fork and bubble-like substrates.
  EMBO J, 22, 6148-6160.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.