spacer
spacer

PDBsum entry 1lkx

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Contractile protein PDB id
1lkx
Jmol
Contents
Protein chains
650 a.a. *
Ligands
VO4-ADP ×4
Metals
_MG ×4
Waters ×64
* Residue conservation analysis
PDB id:
1lkx
Name: Contractile protein
Title: Motor domain of myoe, a class-i myosin
Structure: Myosin ie heavy chain. Chain: a, b, c, d. Fragment: motor domain. Engineered: yes
Source: Dictyostelium discoideum. Organism_taxid: 44689. Expressed in: dictyostelium discoideum. Expression_system_taxid: 44689.
Resolution:
3.00Å     R-factor:   0.228     R-free:   0.273
Authors: M.Kollmar,U.Durrwang,W.Kliche,D.J.Manstein,F.J.Kull
Key ref:
M.Kollmar et al. (2002). Crystal structure of the motor domain of a class-I myosin. EMBO J, 21, 2517-2525. PubMed id: 12032065 DOI: 10.1093/emboj/21.11.2517
Date:
26-Apr-02     Release date:   26-Jun-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q03479  (MYOE_DICDI) -  Myosin IE heavy chain
Seq:
Struc:
 
Seq:
Struc:
1005 a.a.
650 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     myosin complex   1 term 
  Biochemical function     ATP binding     2 terms  

 

 
DOI no: 10.1093/emboj/21.11.2517 EMBO J 21:2517-2525 (2002)
PubMed id: 12032065  
 
 
Crystal structure of the motor domain of a class-I myosin.
M.Kollmar, U.Dürrwang, W.Kliche, D.J.Manstein, F.J.Kull.
 
  ABSTRACT  
 
The crystal structure of the motor domain of Dictyostelium discoideum myosin-IE, a monomeric unconventional myosin, was determined. The crystallographic asymmetric unit contains four independently resolved molecules, highlighting regions that undergo large conformational changes. Differences are particularly pronounced in the actin binding region and the converter domain. The changes in position of the converter domain reflect movements both parallel to and perpendicular to the actin axis. The orientation of the converter domain is approximately 30 degrees further up than in other myosin structures, indicating that MyoE can produce a larger power stroke by rotating its lever arm through a larger angle. The role of extended loops near the actin-binding site is discussed in the context of cellular localization. The core regions of the motor domain are similar, and the structure reveals how that core is stabilized in the absence of an N-terminal SH3-like domain.
 
  Selected figure(s)  
 
Figure 3.
Figure 3 Contacts between the relay region, converter domain and lever arm helix allow these structural elements to move together. (A) The relay region and SH1 helix of MyoE are shown in cyan. In MyoE and other class-I myosins, there is a hydrogen bond between Thr418 in the relay helix and Asn618 from the SH1 helix. (B) Close-up view of this region, viewed along the relay helix. The kink forms at Thr418. (C) Highly conserved residues form a hydrophobic core, and polar residues further stabilize the link via conserved hydrogen bonds (dashed lines). This core interaction is further supported by a small, hydrophobic, highly conserved extension into the converter formed by residues Tyr630 and Val677 (DdTyr699 and DdIle744). At the tip of the relay loop (cyan), conserved Glu429 (DdGlu497) forms hydrogen bonds to residue Thr675 of the converter domain (brown) (DdThr742; at this position there is always a threonine or a serine) and to the backbone nitrogen atoms of converter residues Lys674 and Lys676. (D) Hydrophobic interactions between the lever arm helix (cyan) and core domain (white). All class-I myosins contain an aromatic residue at the positions of Tyr69 and/or Tyr71 (red) in close contact with the conserved Phe686 (red) in the lever arm helix. Either a glycine or an alanine is found at the equivalent position to Phe686 in class-II myosins.
Figure 4.
Figure 4 A model of chicken skeletal muscle myosin motor core (white), converter domain and lever arm (yellow) in the near-rigor state attached to the actin filament (dark gray). Dictyostelium myosin-II in complex with ADP-BeF[3] with a modeled extended lever arm in the 'up' or transition state position is shown in red. The MyoE converter domain and modeled extended lever arm (cyan) is in an 30° higher position.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2002, 21, 2517-2525) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20640478 N.Adamek, M.A.Geeves, and L.M.Coluccio (2011).
Myo1c mutations associated with hearing loss cause defects in the interaction with nucleotide and actin.
  Cell Mol Life Sci, 68, 139-150.  
20195380 J.W.Brown, and C.J.McKnight (2010).
Molecular model of the microvillar cytoskeleton and organization of the brush border.
  PLoS One, 5, e9406.  
20471271 R.E.McConnell, and M.J.Tyska (2010).
Leveraging the membrane - cytoskeleton interface with myosin-1.
  Trends Cell Biol, 20, 418-426.  
20226094 T.P.Burghardt, K.L.Neff, E.D.Wieben, and K.Ajtai (2010).
Myosin individualized: single nucleotide polymorphisms in energy transduction.
  BMC Genomics, 11, 172.  
19408946 K.Ajtai, M.F.Halstead, M.Nyitrai, A.R.Penheiter, Y.Zheng, and T.P.Burghardt (2009).
The myosin C-loop is an allosteric actin contact sensor in actomyosin.
  Biochemistry, 48, 5263-5275.  
18254963 F.Odronitz, and M.Kollmar (2008).
Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of 'partially' processed pseudogene.
  BMC Mol Biol, 9, 21.  
18089562 G.Tsiavaliaris, S.Fujita-Becker, U.Dürrwang, R.P.Diensthuber, M.A.Geeves, and D.J.Manstein (2008).
Mechanism, regulation, and functional properties of Dictyostelium myosin-1B.
  J Biol Chem, 283, 4520-4527.  
17853461 E.Kalay, A.Uzumcu, E.Krieger, R.Caylan, O.Uyguner, M.Ulubil-Emiroglu, H.Erdol, H.Kayserili, G.Hafiz, N.Başerer, A.J.Heister, H.C.Hennies, P.Nürnberg, S.Başaran, H.G.Brunner, C.W.Cremers, A.Karaguzel, B.Wollnik, and H.Kremer (2007).
MYO15A (DFNB3) mutations in Turkish hearing loss families and functional modeling of a novel motor domain mutation.
  Am J Med Genet A, 143, 2382-2389.  
17956731 J.Ménétrey, P.Llinas, M.Mukherjea, H.L.Sweeney, and A.Houdusse (2007).
The structural basis for the large powerstroke of myosin VI.
  Cell, 131, 300-308.
PDB code: 2v26
17987111 N.Volkmann, H.Lui, L.Hazelwood, K.M.Trybus, S.Lowey, and D.Hanein (2007).
The R403Q Myosin Mutation Implicated in Familial Hypertrophic Cardiomyopathy Causes Disorder at the Actomyosin Interface.
  PLoS ONE, 2, e1123.  
17900617 S.Tang, J.C.Liao, A.R.Dunn, R.B.Altman, J.A.Spudich, and J.P.Schmidt (2007).
Predicting allosteric communication in myosin via a pathway of conserved residues.
  J Mol Biol, 373, 1361-1373.  
17182734 Z.Bryant, D.Altman, and J.A.Spudich (2007).
The power stroke of myosin VI and the basis of reverse directionality.
  Proc Natl Acad Sci U S A, 104, 772-777.  
16470332 B.Brenner (2006).
The stroke size of myosins: a reevaluation.
  J Muscle Res Cell Motil, 27, 173-187.  
16857047 M.Kollmar (2006).
Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains.
  BMC Genomics, 7, 183.  
16982629 S.Fujita-Becker, G.Tsiavaliaris, R.Ohkura, T.Shimada, D.J.Manstein, and K.Sutoh (2006).
Functional characterization of the N-terminal region of myosin-2.
  J Biol Chem, 281, 36102-36109.  
16547732 S.Nikolaou, M.Hu, N.B.Chilton, D.Hartman, A.J.Nisbet, P.J.Presidente, and R.B.Gasser (2006).
Isolation and characterization of class II myosin genes from Haemonchus contortus.
  Parasitol Res, 99, 200-203.  
15980431 R.Clark, M.A.Ansari, S.Dash, M.A.Geeves, and L.M.Coluccio (2005).
Loop 1 of transducer region in mammalian class I myosin, Myo1b, modulates actin affinity, ATPase activity, and nucleotide access.
  J Biol Chem, 280, 30935-30942.  
15389316 C.R.Rhodes, R.Hertzano, H.Fuchs, R.E.Bell, M.H.de Angelis, K.P.Steel, and K.B.Avraham (2004).
A Myo7a mutation cosegregates with stereocilia defects and low-frequency hearing impairment.
  Mamm Genome, 15, 686-697.  
15647166 D.J.Manstein (2004).
Molecular engineering of myosin.
  Philos Trans R Soc Lond B Biol Sci, 359, 1907-1912.  
14765199 G.Tsiavaliaris, S.Fujita-Becker, and D.J.Manstein (2004).
Molecular engineering of a backwards-moving myosin motor.
  Nature, 427, 558-561.  
15647159 H.L.Sweeney, and A.Houdusse (2004).
The motor mechanism of myosin V: insights for muscle contraction.
  Philos Trans R Soc Lond B Biol Sci, 359, 1829-1841.  
15630612 J.R.Sellers (2004).
Fifty years of contractility research post sliding filament hypothesis.
  J Muscle Res Cell Motil, 25, 475-482.  
15020589 K.Ajtai, S.P.Garamszegi, S.Watanabe, M.Ikebe, and T.P.Burghardt (2004).
The myosin cardiac loop participates functionally in the actomyosin interaction.
  J Biol Chem, 279, 23415-23421.  
15302934 T.Ishikawa, N.Cheng, X.Liu, E.D.Korn, and A.C.Steven (2004).
Subdomain organization of the Acanthamoeba myosin IC tail from cryo-electron microscopy.
  Proc Natl Acad Sci U S A, 101, 12189-12194.  
12719468 D.Köhler, C.Ruff, E.Meyhöfer, and M.Bähler (2003).
Different degrees of lever arm rotation control myosin step size.
  J Cell Biol, 161, 237-241.  
12736868 F.Donaudy, A.Ferrara, L.Esposito, R.Hertzano, O.Ben-David, R.E.Bell, S.Melchionda, L.Zelante, K.B.Avraham, and P.Gasparini (2003).
Multiple mutations of MYO1A, a cochlear-expressed gene, in sensorineural hearing loss.
  Am J Hum Genet, 72, 1571-1577.  
12808026 H.Toi, K.Fujimura-Kamada, K.Irie, Y.Takai, S.Todo, and K.Tanaka (2003).
She4p/Dim1p interacts with the motor domain of unconventional myosins in the budding yeast, Saccharomyces cerevisiae.
  Mol Biol Cell, 14, 2237-2249.  
14641909 M.Kollmar, and G.Glöckner (2003).
Identification and phylogenetic analysis of Dictyostelium discoideum kinesin proteins.
  BMC Genomics, 4, 47.  
12612343 N.Volkmann, G.Ouyang, K.M.Trybus, D.J.DeRosier, S.Lowey, and D.Hanein (2003).
Myosin isoforms show unique conformations in the actin-bound state.
  Proc Natl Acad Sci U S A, 100, 3227-3232.  
14508494 P.D.Coureux, A.L.Wells, J.Ménétrey, C.M.Yengo, C.A.Morris, H.L.Sweeney, and A.Houdusse (2003).
A structural state of the myosin V motor without bound nucleotide.
  Nature, 425, 419-423.
PDB code: 1oe9
14656445 S.Gourinath, D.M.Himmel, J.H.Brown, L.Reshetnikova, A.G.Szent-Györgyi, and C.Cohen (2003).
Crystal structure of scallop Myosin s1 in the pre-power stroke state to 2.6 a resolution: flexibility and function in the head.
  Structure, 11, 1621-1627.
PDB code: 1qvi
12725728 S.Wesche, M.Arnold, and R.P.Jansen (2003).
The UCS domain protein She4p binds to myosin motor domains and is essential for class I and class V myosin function.
  Curr Biol, 13, 715-724.  
14502270 T.F.Reubold, S.Eschenburg, A.Becker, F.J.Kull, and D.J.Manstein (2003).
A structural model for actin-induced nucleotide release in myosin.
  Nat Struct Biol, 10, 826-830.
PDB code: 1q5g
12393751 G.Tsiavaliaris, S.Fujita-Becker, R.Batra, D.I.Levitsky, F.J.Kull, M.A.Geeves, and D.J.Manstein (2002).
Mutations in the relay loop region result in dominant-negative inhibition of myosin II function in Dictyostelium.
  EMBO Rep, 3, 1099-1105.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.