spacer
spacer

PDBsum entry 1lew

Go to PDB code: 
protein ligands links
Transferase PDB id
1lew
Jmol
Contents
Protein chain
341 a.a. *
Ligands
LYS-PRO-ASP-LEU-
ARG-VAL-VAL-ILE-
PRO-PRO
Waters ×125
* Residue conservation analysis
PDB id:
1lew
Name: Transferase
Title: Crystal structure of map kinase p38 complexed to the docking its nuclear substrate mef2a
Structure: Mitogen-activated protein kinase 14. Chain: a. Synonym: map kinase p38, mitogen-activated protein kinase p engineered: yes. Myocyte-specific enhancer factor 2a. Chain: b. Synonym: mef2a. Engineered: yes
Source: Mus musculus. House mouse. Organism_taxid: 10090. Gene: p38. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Synthetic: yes
Biol. unit: Dimer (from PQS)
Resolution:
2.30Å     R-factor:   0.215     R-free:   0.257
Authors: C.-I.Chang,B.-E.Xu,R.Akella,M.H.Cobb,E.J.Goldsmith
Key ref:
C.I.Chang et al. (2002). Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell, 9, 1241-1249. PubMed id: 12086621 DOI: 10.1016/S1097-2765(02)00525-7
Date:
10-Apr-02     Release date:   10-Jul-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P47811  (MK14_MOUSE) -  Mitogen-activated protein kinase 14
Seq:
Struc:
360 a.a.
341 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.7.11.24  - Mitogen-activated protein kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + a protein = ADP + a phosphoprotein
ATP
+ protein
= ADP
+ phosphoprotein
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cell   8 terms 
  Biological process     intracellular signal transduction   47 terms 
  Biochemical function     nucleotide binding     10 terms  

 

 
    reference    
 
 
DOI no: 10.1016/S1097-2765(02)00525-7 Mol Cell 9:1241-1249 (2002)
PubMed id: 12086621  
 
 
Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b.
C.I.Chang, B.E.Xu, R.Akella, M.H.Cobb, E.J.Goldsmith.
 
  ABSTRACT  
 
The structures of the MAP kinase p38 in complex with docking site peptides containing a phi(A)-X-phi(B) motif, derived from substrate MEF2A and activating enzyme MKK3b, have been solved. The peptides bind to the same site in the C-terminal domain of the kinase, which is both outside the active site and distinct from the "CD" domain previously implicated in docking site interactions. Mutational analysis on the interaction of p38 with the docking sites supports the crystallographic models and has uncovered two novel residues on the docking groove that are critical for binding. The two peptides induce similar large conformational changes local to the peptide binding groove. The peptides also induce unexpected and different conformational changes in the active site, as well as structural disorder in the phosphorylation lip.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Structural Details of the Docking Site RecognitionStereo diagram of the docking groove showing p38 residues (yellow) involved in interaction with (A) pepMEF2A (green) and (B) pepMKK3b (pink). Hydrogen bonds are indicated by dotted lines.
Figure 5.
Figure 5. Structure-Based Sequence Alignments of the φ[A]-X-φ[B] Docking Sites and the Docking Grooves of MAP KinasesIn (A), the basic residues and φ residues are shown in blue and orange letters, respectively. In (B), residues in p38α and equivalent residues in ERK2 and JNK2 that may participate in hydrophobic contacts with the MAP kinase docking sites are shown in orange letters.
 
  The above figures are reprinted by permission from Cell Press: Mol Cell (2002, 9, 1241-1249) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20626350 A.Cuadrado, and A.R.Nebreda (2010).
Mechanisms and functions of p38 MAPK signalling.
  Biochem J, 429, 403-417.  
19887452 E.H.Hong, S.J.Lee, J.S.Kim, K.H.Lee, H.D.Um, J.H.Kim, S.J.Kim, J.I.Kim, and S.G.Hwang (2010).
Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase.
  J Biol Chem, 285, 1283-1295.  
21134636 R.Akella, X.Min, Q.Wu, K.H.Gardner, and E.J.Goldsmith (2010).
The third conformation of p38α MAP kinase observed in phosphorylated p38α and in solution.
  Structure, 18, 1571-1578.
PDB code: 3p4k
21070949 W.Ma, Y.Shang, Z.Wei, W.Wen, W.Wang, and M.Zhang (2010).
Phosphorylation of DCC by ERK2 is facilitated by direct docking of the receptor P1 domain to the kinase.
  Structure, 18, 1502-1511.
PDB code: 3o71
19196711 A.J.Bardwell, E.Frankson, and L.Bardwell (2009).
Selectivity of docking sites in MAPK kinases.
  J Biol Chem, 284, 13165-13173.  
19295513 A.Mody, J.Weiner, and S.Ramanathan (2009).
Modularity of MAP kinases allows deformation of their signalling pathways.
  Nat Cell Biol, 11, 484-491.  
19278650 A.N.Bullock, S.Das, J.E.Debreczeni, P.Rellos, O.Fedorov, F.H.Niesen, K.Guo, E.Papagrigoriou, A.L.Amos, S.Cho, B.E.Turk, G.Ghosh, and S.Knapp (2009).
Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation.
  Structure, 17, 352-362.
PDB codes: 1z57 2eu9
19805511 A.W.Truman, K.Y.Kim, and D.E.Levin (2009).
Mechanism of Mpk1 mitogen-activated protein kinase binding to the Swi4 transcription factor and its regulation by a novel caffeine-induced phosphorylation.
  Mol Cell Biol, 29, 6449-6461.  
19544470 C.R.Geest, M.Buitenhuis, A.G.Laarhoven, M.B.Bierings, M.C.Bruin, E.Vellenga, and P.J.Coffer (2009).
p38 MAP kinase inhibits neutrophil development through phosphorylation of C/EBPalpha on serine 21.
  Stem Cells, 27, 2271-2282.  
19667405 C.R.Geest, M.Buitenhuis, M.J.Groot Koerkamp, F.C.Holstege, E.Vellenga, and P.J.Coffer (2009).
Tight control of MEK-ERK activation is essential in regulating proliferation, survival, and cytokine production of CD34+-derived neutrophil progenitors.
  Blood, 114, 3402-3412.  
19473979 E.Aberg, K.M.Torgersen, B.Johansen, S.M.Keyse, M.Perander, and O.M.Seternes (2009).
Docking of PRAK/MK5 to the Atypical MAPKs ERK3 and ERK4 Defines a Novel MAPK Interaction Motif.
  J Biol Chem, 284, 19392-19401.  
19519955 G.L.Johnson, and S.M.Gomez (2009).
Sequence patches on MAPK surfaces define protein-protein interactions.
  Genome Biol, 10, 222.  
19424502 M.C.Balasu, L.N.Spiridon, S.Miron, C.T.Craescu, A.J.Scheidig, A.J.Petrescu, and S.E.Szedlacsek (2009).
Interface analysis of the complex between ERK2 and PTP-SL.
  PLoS ONE, 4, e5432.  
19301097 N.Buzzi, A.Colicheo, R.Boland, and A.R.de Boland (2009).
MAP kinases in proliferating human colon cancer Caco-2 cells.
  Mol Cell Biochem, 328, 201-208.  
19141286 X.Min, R.Akella, H.He, J.M.Humphreys, S.E.Tsutakawa, S.J.Lee, J.A.Tainer, M.H.Cobb, and E.J.Goldsmith (2009).
The structure of the MAP2K MEK6 reveals an autoinhibitory dimer.
  Structure, 17, 96.
PDB code: 3enm
18811940 A.Tingaud-Sequeira, F.Chauvigné, M.Fabra, J.Lozano, D.Raldúa, and J.Cerdà (2008).
Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication.
  BMC Evol Biol, 8, 259.  
18482985 D.L.Sheridan, Y.Kong, S.A.Parker, K.N.Dalby, and B.E.Turk (2008).
Substrate discrimination among mitogen-activated protein kinases through distinct docking sequence motifs.
  J Biol Chem, 283, 19511-19520.  
18501927 K.M.Sours, S.C.Kwok, T.Rachidi, T.Lee, A.Ring, A.N.Hoofnagle, K.A.Resing, and N.G.Ahn (2008).
Hydrogen-exchange mass spectrometry reveals activation-induced changes in the conformational mobility of p38alpha MAP kinase.
  J Mol Biol, 379, 1075-1093.  
18347614 M.C.Lawrence, A.Jivan, C.Shao, L.Duan, D.Goad, E.Zaganjor, J.Osborne, K.McGlynn, S.Stippec, S.Earnest, W.Chen, and M.H.Cobb (2008).
The roles of MAPKs in disease.
  Cell Res, 18, 436-442.  
18083711 M.C.Martin, L.A.Allan, E.J.Mancini, and P.R.Clarke (2008).
The docking interaction of caspase-9 with ERK2 provides a mechanism for the selective inhibitory phosphorylation of caspase-9 at threonine 125.
  J Biol Chem, 283, 3854-3865.  
18068683 R.Akella, T.M.Moon, and E.J.Goldsmith (2008).
Unique MAP Kinase binding sites.
  Biochim Biophys Acta, 1784, 48-55.  
18212044 Y.Murakami, K.Tatebayashi, and H.Saito (2008).
Two adjacent docking sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine phosphatase.
  Mol Cell Biol, 28, 2481-2494.  
17496919 A.G.Turjanski, J.P.Vaqué, and J.S.Gutkind (2007).
MAP kinases and the control of nuclear events.
  Oncogene, 26, 3240-3253.  
17395714 A.White, C.A.Pargellis, J.M.Studts, B.G.Werneburg, and B.T.Farmer (2007).
Molecular basis of MAPK-activated protein kinase 2:p38 assembly.
  Proc Natl Acad Sci U S A, 104, 6353-6358.
PDB code: 2oza
17694525 D.Kuhn, N.Weskamp, E.Hüllermeier, and G.Klebe (2007).
Functional Classification of Protein Kinase Binding Sites Using Cavbase.
  ChemMedChem, 2, 1432-1447.  
17496916 D.M.Owens, and S.M.Keyse (2007).
Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases.
  Oncogene, 26, 3203-3213.  
17255097 E.ter Haar, P.Prabhakar, P.Prabakhar, X.Liu, and C.Lepre (2007).
Crystal structure of the p38 alpha-MAPKAP kinase 2 heterodimer.
  J Biol Chem, 282, 9733-9739.
PDB codes: 2okr 2onl
17937911 G.Bunkoczi, E.Salah, P.Filippakopoulos, O.Fedorov, S.Müller, F.Sobott, S.A.Parker, H.Zhang, W.Min, B.E.Turk, and S.Knapp (2007).
Structural and functional characterization of the human protein kinase ASK1.
  Structure, 15, 1215-1226.
PDB code: 2clq
17306896 G.L.Johnson, and K.Nakamura (2007).
The c-jun kinase/stress-activated pathway: regulation, function and role in human disease.
  Biochim Biophys Acta, 1773, 1341-1348.  
17585314 J.A.Ubersax, and J.E.Ferrell (2007).
Mechanisms of specificity in protein phosphorylation.
  Nat Rev Mol Cell Biol, 8, 530-541.  
17765316 J.E.Clark, N.Sarafraz, and M.S.Marber (2007).
Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease.
  Pharmacol Ther, 116, 192-206.  
17287826 J.Rudolph (2007).
Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases.
  Nat Rev Cancer, 7, 202-211.  
17452462 K.Nakamura, and G.L.Johnson (2007).
Noncanonical function of MEKK2 and MEK5 PB1 domains for coordinated extracellular signal-regulated kinase 5 and c-Jun N-terminal kinase signaling.
  Mol Cell Biol, 27, 4566-4577.  
17496909 M.Raman, W.Chen, and M.H.Cobb (2007).
Differential regulation and properties of MAPKs.
  Oncogene, 26, 3100-3112.  
  17918909 N.Fernandes, D.E.Bailey, D.L.Vanvranken, and N.L.Allbritton (2007).
Use of docking peptides to design modular substrates with high efficiency for mitogen-activated protein kinase extracellular signal-regulated kinase.
  ACS Chem Biol, 2, 665-673.  
17658891 O.Abramczyk, M.A.Rainey, R.Barnes, L.Martin, and K.N.Dalby (2007).
Expanding the repertoire of an ERK2 recruitment site: cysteine footprinting identifies the D-recruitment site as a mediator of Ets-1 binding.
  Biochemistry, 46, 9174-9186.  
17466055 R.Chen-Chih Wu, M.F.Shaio, and W.L.Cho (2007).
A p38 MAP kinase regulates the expression of the Aedes aegypti defensin gene in mosquito cells.
  Insect Mol Biol, 16, 389-399.  
17604854 R.E.Chen, and J.Thorner (2007).
Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae.
  Biochim Biophys Acta, 1773, 1311-1340.  
17597065 S.Bendetz-Nezer, and R.Seger (2007).
Role of non-phosphorylated activation loop residues in determining ERK2 dephosphorylation, activity, and subcellular localization.
  J Biol Chem, 282, 25114-25122.  
18060821 Y.Zhu, H.Li, C.Long, L.Hu, H.Xu, L.Liu, S.Chen, D.C.Wang, and F.Shao (2007).
Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase.
  Mol Cell, 28, 899-913.
PDB codes: 2p1w 2q8y
16469909 A.Breitkreutz, and M.Tyers (2006).
Cell signaling. A sophisticated scaffold wields a new trick.
  Science, 311, 789-790.
PDB codes: 2f49 2fa2
17079133 A.Reményi, M.C.Good, and W.A.Lim (2006).
Docking interactions in protein kinase and phosphatase networks.
  Curr Opin Struct Biol, 16, 676-685.  
17046812 B.Zhou, J.Zhang, S.Liu, S.Reddy, F.Wang, and Z.Y.Zhang (2006).
Mapping ERK2-MKP3 binding interfaces by hydrogen/deuterium exchange mass spectrometry.
  J Biol Chem, 281, 38834-38844.  
16533805 D.T.Ho, A.J.Bardwell, S.Grewal, C.Iverson, and L.Bardwell (2006).
Interacting JNK-docking sites in MKK7 promote binding and activation of JNK mitogen-activated protein kinases.
  J Biol Chem, 281, 13169-13179.  
16648477 H.Zhou, M.Zheng, J.Chen, C.Xie, A.R.Kolatkar, T.Zarubin, Z.Ye, R.Akella, S.Lin, E.J.Goldsmith, and J.Han (2006).
Determinants that control the specific interactions between TAB1 and p38alpha.
  Mol Cell Biol, 26, 3824-3834.  
16799472 J.D.Ashwell (2006).
The many paths to p38 mitogen-activated protein kinase activation in the immune system.
  Nat Rev Immunol, 6, 532-540.  
16884917 L.Bardwell, and K.Shah (2006).
Analysis of mitogen-activated protein kinase activation and interactions with regulators and substrates.
  Methods, 40, 213-223.  
17052210 L.Bardwell (2006).
Mechanisms of MAPK signalling specificity.
  Biochem Soc Trans, 34, 837-841.  
17158707 M.A.Bogoyevitch, and B.Kobe (2006).
Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases.
  Microbiol Mol Biol Rev, 70, 1061-1095.  
16756506 R.P.Bhattacharyya, A.Reményi, B.J.Yeh, and W.A.Lim (2006).
Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits.
  Annu Rev Biochem, 75, 655-680.  
16424299 R.P.Bhattacharyya, A.Reményi, M.C.Good, C.J.Bashor, A.M.Falick, and W.A.Lim (2006).
The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway.
  Science, 311, 822-826.
PDB codes: 2f49 2f9g 2fa2
15979847 S.Grewal, D.M.Molina, and L.Bardwell (2006).
Mitogen-activated protein kinase (MAPK)-docking sites in MAPK kinases function as tethers that are crucial for MAPK regulation in vivo.
  Cell Signal, 18, 123-134.  
16620308 S.L.McGee, and M.Hargreaves (2006).
Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanisms.
  Clin Exp Pharmacol Physiol, 33, 395-399.  
16439366 S.Lee, M.K.Ayrapetov, D.J.Kemble, K.Parang, and G.Sun (2006).
Docking-based substrate recognition by the catalytic domain of a protein tyrosine kinase, C-terminal Src kinase (Csk).
  J Biol Chem, 281, 8183-8189.  
16567630 S.Liu, J.P.Sun, B.Zhou, and Z.Y.Zhang (2006).
Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3.
  Proc Natl Acad Sci U S A, 103, 5326-5331.
PDB code: 2fys
17055984 S.Peregrin, M.Jurado-Pueyo, P.M.Campos, V.Sanz-Moreno, A.Ruiz-Gomez, P.Crespo, F.Mayor, and C.Murga (2006).
Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK.
  Curr Biol, 16, 2042-2047.  
16799155 S.Polychronopoulos, M.Verykokakis, M.N.Yazicioglu, M.Sakarellos-Daitsiotis, M.H.Cobb, and G.Mavrothalassitis (2006).
The transcriptional ETS2 repressor factor associates with active and inactive Erks through distinct FXF motifs.
  J Biol Chem, 281, 25601-25611.  
16765894 T.Zhou, L.Sun, J.Humphreys, and E.J.Goldsmith (2006).
Docking interactions induce exposure of activation loop in the MAP kinase ERK2.
  Structure, 14, 1011-1019.
PDB code: 2gph
16849316 Y.J.Kang, A.Seit-Nebi, R.J.Davis, and J.Han (2006).
Multiple activation mechanisms of p38alpha mitogen-activated protein kinase.
  J Biol Chem, 281, 26225-26234.  
17085044 Z.Shi, K.A.Resing, and N.G.Ahn (2006).
Networks for the allosteric control of protein kinases.
  Curr Opin Struct Biol, 16, 686-692.  
16156785 A.E.Szafranska, and K.N.Dalby (2005).
Kinetic mechanism for p38 MAP kinase alpha. A partial rapid-equilibrium random-order ternary-complex mechanism for the phosphorylation of a protein substrate.
  FEBS J, 272, 4631-4645.  
16364919 A.Reményi, M.C.Good, R.P.Bhattacharyya, and W.A.Lim (2005).
The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network.
  Mol Cell, 20, 951-962.
PDB codes: 2b9f 2b9h 2b9i 2b9j
15616583 C.H.Chen, W.J.Wang, J.C.Kuo, H.C.Tsai, J.R.Lin, Z.F.Chang, and R.H.Chen (2005).
Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK.
  EMBO J, 24, 294-304.  
16148006 C.Tárrega, P.Ríos, R.Cejudo-Marín, C.Blanco-Aparicio, L.van den Berk, J.Schepens, W.Hendriks, L.Tabernero, and R.Pulido (2005).
ERK2 shows a restrictive and locally selective mechanism of recognition by its tyrosine phosphatase inactivators not shared by its activator MEK1.
  J Biol Chem, 280, 37885-37894.  
16246839 D.M.Molina, S.Grewal, and L.Bardwell (2005).
Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation.
  J Biol Chem, 280, 42051-42060.  
15619233 D.W.Powell, W.M.Pierce, and K.R.McLeish (2005).
Defining mitogen-activated protein kinase pathways with mass spectrometry-based approaches.
  Mass Spectrom Rev, 24, 847-864.  
15735663 P.J.Hamard, R.Dalbies-Tran, C.Hauss, I.Davidson, C.Kedinger, and B.Chatton (2005).
A functional interaction between ATF7 and TAF12 that is modulated by TAF4.
  Oncogene, 24, 3472-3483.  
15728578 R.Ley, K.Hadfield, E.Howes, and S.J.Cook (2005).
Identification of a DEF-type docking domain for extracellular signal-regulated kinases 1/2 that directs phosphorylation and turnover of the BH3-only protein BimEL.
  J Biol Chem, 280, 17657-17663.  
15623523 S.A.Lieser, C.Shindler, B.E.Aubol, S.Lee, G.Sun, and J.A.Adams (2005).
Phosphoryl transfer step in the C-terminal Src kinase controls Src recognition.
  J Biol Chem, 280, 7769-7776.  
15988018 Z.Fu, M.J.Schroeder, J.Shabanowitz, P.Kaldis, K.Togawa, A.K.Rustgi, D.F.Hunt, and T.W.Sturgill (2005).
Activation of a nuclear Cdc2-related kinase within a mitogen-activated protein kinase-like TDY motif by autophosphorylation and cyclin-dependent protein kinase-activating kinase.
  Mol Cell Biol, 25, 6047-6064.  
15145958 B.E.Aubol, L.Ungs, R.Lukasiewicz, G.Ghosh, and J.A.Adams (2004).
Chemical clamping allows for efficient phosphorylation of the RNA carrier protein Npl3.
  J Biol Chem, 279, 30182-30188.  
15034923 J.C.Tapia, V.M.Bolanos-Garcia, M.Sayed, C.C.Allende, and J.E.Allende (2004).
Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2.
  J Cell Biochem, 91, 865-879.  
14699111 L.M.Mooney, and A.J.Whitmarsh (2004).
Docking interactions in the c-Jun N-terminal kinase pathway.
  J Biol Chem, 279, 11843-11852.  
14570903 M.Y.Niv, H.Rubin, J.Cohen, L.Tsirulnikov, T.Licht, A.Peretzman-Shemer, E.Cna'an, A.Tartakovsky, I.Stein, S.Albeck, I.Weinstein, M.Goldenberg-Furmanov, D.Tobi, E.Cohen, M.Laster, S.A.Ben-Sasson, and H.Reuveni (2004).
Sequence-based design of kinase inhibitors applicable for therapeutics and target identification.
  J Biol Chem, 279, 1242-1255.  
15187187 P.P.Roux, and J.Blenis (2004).
ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions.
  Microbiol Mol Biol Rev, 68, 320-344.  
15208323 R.K.Barr, I.Boehm, P.V.Attwood, P.M.Watt, and M.A.Bogoyevitch (2004).
The critical features and the mechanism of inhibition of a kinase interaction motif-based peptide inhibitor of JNK.
  J Biol Chem, 279, 36327-36338.  
15271995 R.K.Barr, R.M.Hopkins, P.M.Watt, and M.A.Bogoyevitch (2004).
Reverse two-hybrid screening identifies residues of JNK required for interaction with the kinase interaction motif of JNK-interacting protein-1.
  J Biol Chem, 279, 43178-43189.  
15068802 T.Lee, A.N.Hoofnagle, Y.Kabuyama, J.Stroud, X.Min, E.J.Goldsmith, L.Chen, K.A.Resing, and N.G.Ahn (2004).
Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry.
  Mol Cell, 14, 43-55.  
15141161 Y.S.Heo, S.K.Kim, C.I.Seo, Y.K.Kim, B.J.Sung, H.S.Lee, J.I.Lee, S.Y.Park, J.H.Kim, K.Y.Hwang, Y.L.Hyun, Y.H.Jeon, S.Ro, J.M.Cho, T.G.Lee, and C.H.Yang (2004).
Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125.
  EMBO J, 23, 2185-2195.
PDB codes: 1ukh 1uki
12893778 D.Brancho, N.Tanaka, A.Jaeschke, J.J.Ventura, N.Kelkar, Y.Tanaka, M.Kyuuma, T.Takeshita, R.A.Flavell, and R.J.Davis (2003).
Mechanism of p38 MAP kinase activation in vivo.
  Genes Dev, 17, 1969-1978.  
12748288 D.V.Bulavin, O.Kovalsky, M.C.Hollander, and A.J.Fornace (2003).
Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a.
  Mol Cell Biol, 23, 3859-3871.  
14592973 E.Perdiguero, M.J.Pillaire, J.F.Bodart, F.Hennersdorf, M.Frödin, N.S.Duesbery, G.Alonso, and A.R.Nebreda (2003).
Xp38gamma/SAPK3 promotes meiotic G(2)/M transition in Xenopus oocytes and activates Cdc25C.
  EMBO J, 22, 5746-5756.  
14506247 F.L.Chou, J.M.Hill, J.C.Hsieh, J.Pouyssegur, A.Brunet, A.Glading, F.Uberall, J.W.Ramos, M.H.Werner, and M.H.Ginsberg (2003).
PEA-15 binding to ERK1/2 MAPKs is required for its modulation of integrin activation.
  J Biol Chem, 278, 52587-52597.  
12832470 G.Yaakov, M.Bell, S.Hohmann, and D.Engelberg (2003).
Combination of two activating mutations in one HOG1 gene forms hyperactive enzymes that induce growth arrest.
  Mol Cell Biol, 23, 4826-4840.  
12754209 J.Zhang, B.Zhou, C.F.Zheng, and Z.Y.Zhang (2003).
A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates.
  J Biol Chem, 278, 29901-29912.  
12794087 K.Masuda, H.Shima, C.Katagiri, and K.Kikuchi (2003).
Activation of ERK induces phosphorylation of MAPK phosphatase-7, a JNK specific phosphatase, at Ser-446.
  J Biol Chem, 278, 32448-32456.  
14614847 M.Raman, and M.H.Cobb (2003).
MAP kinase modules: many roads home.
  Curr Biol, 13, R886-R888.  
12548283 T.A.Young, B.Delagoutte, J.A.Endrizzi, A.M.Falick, and T.Alber (2003).
Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases.
  Nat Struct Biol, 10, 168-174.
PDB code: 1mru
14567689 W.F.Waas, M.A.Rainey, A.E.Szafranska, and K.N.Dalby (2003).
Two rate-limiting steps in the kinetic mechanism of the serine/threonine specific protein kinase ERK2: a case of fast phosphorylation followed by fast product release.
  Biochemistry, 42, 12273-12286.  
14500727 Z.Tu, and F.S.Lee (2003).
Subdomain VIII is a specificity-determining region in MEKK1.
  J Biol Chem, 278, 48498-48505.  
12228228 E.D.Gallagher, S.Xu, C.Moomaw, C.A.Slaughter, and M.H.Cobb (2002).
Binding of JNK/SAPK to MEKK1 is regulated by phosphorylation.
  J Biol Chem, 277, 45785-45792.  
12121643 E.J.Goldsmith, and C.I.Chang (2002).
Another twist in helix C and a missing pocket.
  Structure, 10, 888-889.  
12456656 J.M.Hill, H.Vaidyanathan, J.W.Ramos, M.H.Ginsberg, and M.H.Werner (2002).
Recognition of ERK MAP kinase by PEA-15 reveals a common docking site within the death domain and death effector domain.
  EMBO J, 21, 6494-6504.
PDB code: 1n3k
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer