PDBsum entry 1lci

Go to PDB code: 
protein links
Oxidoreductase PDB id
Protein chain
523 a.a. *
Waters ×365
* Residue conservation analysis
PDB id:
Name: Oxidoreductase
Title: Firefly luciferase
Structure: Luciferase. Chain: a. Engineered: yes
Source: Photinus pyralis. Common eastern firefly. Organism_taxid: 7054. Expressed in: escherichia coli. Expression_system_taxid: 562
2.00Å     R-factor:   0.224     R-free:   0.265
Authors: E.Conti,N.P.Franks,P.Brick
Key ref:
E.Conti et al. (1996). Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure, 4, 287-298. PubMed id: 8805533 DOI: 10.1016/S0969-2126(96)00033-0
01-Jun-96     Release date:   26-Mar-97    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P08659  (LUCI_PHOPY) -  Luciferin 4-monooxygenase
550 a.a.
523 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Photinus-luciferin 4-monooxygenase (ATP-hydrolyzing).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

Photinus-luciferin 4-monooxygenase (ATP-hydrolysing)
      Reaction: Photinus luciferin + O2 + ATP = oxidized Photinus luciferin + CO2 + AMP + diphosphate + light
Photinus luciferin
+ O(2)
= oxidized Photinus luciferin
+ CO(2)
+ diphosphate
+ light
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     peroxisome   1 term 
  Biological process     metabolic process   3 terms 
  Biochemical function     catalytic activity     7 terms  


DOI no: 10.1016/S0969-2126(96)00033-0 Structure 4:287-298 (1996)
PubMed id: 8805533  
Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes.
E.Conti, N.P.Franks, P.Brick.
BACKGROUND: Firefly luciferase is a 62 kDa protein that catalyzes the production of light. In the presence of MgATP and molecular oxygen, the enzyme oxidizes its substrate, firefly luciferin, emitting yellow-green light. The reaction proceeds through activation of the substrate to form an adenylate intermediate. Firefly luciferase shows extensive sequence homology with a number of enzymes that utilize ATP in adenylation reactions. RESULTS: We have determined the crystal structure of firefly luciferase at 2.0 A resolution. The protein is folded into two compact domains. The large N-terminal domain consists of a beta-barrel and two beta-sheets. The sheets are flanked by alpha-helices to form an alphabetaalphabetaalpha five-layered structure. The C-terminal portion of the molecule forms a distinct domain, which is separated from the N-terminal domain by a wide cleft. CONCLUSIONS: Firefly luciferase is the first member of a superfamily of homologous enzymes, which includes acyl-coenzyme A ligases and peptide synthetases, to have its structure characterized. The residues conserved within the superfamily are located on the surfaces of the two domains on either side of the cleft, but are too far apart to interact simultaneously with the substrates. This suggests that the two domains will close in the course of the reaction. Firefly luciferase has a novel structural framework for catalyzing adenylate-forming reactions.
  Selected figure(s)  
Figure 2.
Figure 2. Ribbon representations of the firefly luciferase molecule shown in two orthogonal views. The three subdomains of the large N-terminal domain are shown in blue (β-sheet A), purple (β-sheet B) and green (β-barrel) and the small C-terminal domain is shown in yellow. Disordered loops are drawn in violet. Figure 2. Ribbon representations of the firefly luciferase molecule shown in two orthogonal views. The three subdomains of the large N-terminal domain are shown in blue (β-sheet A), purple (β-sheet B) and green (β-barrel) and the small C-terminal domain is shown in yellow. Disordered loops are drawn in violet. (Generated using the program MOLSCRIPT [[4]62].)
Figure 3.
Figure 3. Stereo α-carbon trace viewed in a similar orientation to Figure 2a, with some sequence numbering for reference. Figure 3. Stereo α-carbon trace viewed in a similar orientation to [3]Figure 2a, with some sequence numbering for reference.
  The above figures are reprinted by permission from Cell Press: Structure (1996, 4, 287-298) copyright 1996.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21188462 S.Hosseinkhani (2011).
Molecular enigma of multicolor bioluminescence of firefly luciferase.
  Cell Mol Life Sci, 68, 1167-1182.  
20886161 B.F.Milne, M.A.Marques, and F.Nogueira (2010).
Fragment molecular orbital investigation of the role of AMP protonation in firefly luciferase pH-sensitivity.
  Phys Chem Chem Phys, 12, 14285-14293.  
20418421 D.J.Sukovich, J.L.Seffernick, J.E.Richman, J.A.Gralnick, and L.P.Wackett (2010).
Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA.
  Appl Environ Microbiol, 76, 3850-3862.  
20062848 F.G.Arnoldi, A.J.da Silva Neto, and V.R.Viviani (2010).
Molecular insights on the evolution of the lateral and head lantern luciferases and bioluminescence colors in Mastinocerini railroad-worms (Coleoptera: Phengodidae).
  Photochem Photobiol Sci, 9, 87-92.  
20678224 L.Aravind, Souza, and L.M.Iyer (2010).
Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis.
  Biol Direct, 5, 48.  
20593108 M.Imani, S.Hosseinkhani, S.Ahmadian, and M.Nazari (2010).
Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity.
  Photochem Photobiol Sci, 9, 1167-1177.  
20221465 P.Maghami, B.Ranjbar, S.Hosseinkhani, A.Ghasemi, A.Moradi, and P.Gill (2010).
Relationship between stability and bioluminescence color of firefly luciferase.
  Photochem Photobiol Sci, 9, 376-383.  
20953191 S.K.Sharma, P.De los Rios, P.Christen, A.Lustig, and P.Goloubinoff (2010).
The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase.
  Nat Chem Biol, 6, 914-920.  
19923209 T.V.Lee, L.J.Johnson, R.D.Johnson, A.Koulman, G.A.Lane, J.S.Lott, and V.L.Arcus (2010).
Structure of a eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis.
  J Biol Chem, 285, 2415-2427.
PDB code: 3ite
20526507 V.R.Viviani, V.Scorsato, R.A.Prado, J.G.Pereira, K.Niwa, Y.Ohmiya, and J.A.Barbosa (2010).
The origin of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase): luciferin stereoselectivity as a switch for the oxygenase activity.
  Photochem Photobiol Sci, 9, 1111-1119.  
20851351 V.Villalobos, S.Naik, M.Bruinsma, R.S.Dothager, M.H.Pan, M.Samrakandi, B.Moss, A.Elhammali, and D.Piwnica-Worms (2010).
Dual-color click beetle luciferase heteroprotein fragment complementation assays.
  Chem Biol, 17, 1018-1029.  
  19610673 A.M.Gulick (2009).
Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase.
  ACS Chem Biol, 4, 811-827.  
19492113 B.Said Alipour, S.Hosseinkhani, S.K.Ardestani, and A.Moradi (2009).
The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase.
  Photochem Photobiol Sci, 8, 847-855.  
19450256 D.Thor, D.Le Duc, R.Strotmann, and T.Schöneberg (2009).
Luciferase activity under direct ligand-dependent control of a muscarinic acetylcholine receptor.
  BMC Biotechnol, 9, 46.  
19558417 F.Ataei, S.Hosseinkhani, and K.Khajeh (2009).
Limited proteolysis of luciferase as a reporter in nanosystem biology: a comparative study.
  Photochem Photobiol, 85, 1162-1167.  
19067737 K.S.Minke, P.Staib, A.Puetter, I.Gehrke, R.K.Gandhirajan, A.Schlösser, E.K.Schmitt, M.Hallek, and K.A.Kreuzer (2009).
Small molecule inhibitors of WNT signaling effectively induce apoptosis in acute myeloid leukemia cells.
  Eur J Haematol, 82, 165-175.  
19725502 L.Rowe, E.Dikici, and S.Daunert (2009).
Engineering bioluminescent proteins: expanding their analytical potential.
  Anal Chem, 81, 8662-8668.  
19544569 M.B.Shah, C.Ingram-Smith, L.L.Cooper, J.Qu, Y.Meng, K.S.Smith, and A.M.Gulick (2009).
The 2.1 A crystal structure of an acyl-CoA synthetase from Methanosarcina acetivorans reveals an alternate acyl-binding pocket for small branched acyl substrates.
  Proteins, 77, 685-698.
PDB code: 3etc
19473830 M.Ostermeier (2009).
Designing switchable enzymes.
  Curr Opin Struct Biol, 19, 442-448.  
19093108 N.Berovic, D.J.Parker, and M.D.Smith (2009).
An investigation of the reaction kinetics of luciferase and the effect of ionizing radiation on the reaction rate.
  Eur Biophys J, 38, 427-435.  
19536355 N.Hida, M.Awais, M.Takeuchi, N.Ueno, M.Tashiro, C.Takagi, T.Singh, M.Hayashi, Y.Ohmiya, and T.Ozawa (2009).
High-sensitivity real-time imaging of dual protein-protein interactions in living subjects using multicolor luciferases.
  PLoS One, 4, e5868.  
19182784 P.Arora, A.Goyal, V.T.Natarajan, E.Rajakumara, P.Verma, R.Gupta, M.Yousuf, O.A.Trivedi, D.Mohanty, A.Tyagi, R.Sankaranarayanan, and R.S.Gokhale (2009).
Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis.
  Nat Chem Biol, 5, 166-173.
PDB code: 3e53
18949818 S.M.Marques, and J.C.Esteves da Silva (2009).
Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions.
  IUBMB Life, 61, 6.  
19252386 T.Ozawa (2009).
Protein reconstitution methods for visualizing biomolecular function in living cells.
  Yakugaku Zasshi, 129, 289-295.  
18046456 A.Giodini, and P.Cresswell (2008).
Hsp90-mediated cytosolic refolding of exogenous proteins internalized by dendritic cells.
  EMBO J, 27, 201-211.  
18620418 A.S.Reger, R.Wu, D.Dunaway-Mariano, and A.M.Gulick (2008).
Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase.
  Biochemistry, 47, 8016-8025.
PDB codes: 3cw8 3cw9
18583577 A.Tanovic, S.A.Samel, L.O.Essen, and M.A.Marahiel (2008).
Crystal structure of the termination module of a nonribosomal peptide synthetase.
  Science, 321, 659-663.
PDB code: 2vsq
18357440 B.Wenge, and H.Bönisch (2008).
N-Ethylmaleimide differentially inhibits substrate uptake by and ligand binding to the noradrenaline transporter.
  Naunyn Schmiedebergs Arch Pharmacol, 377, 255-265.  
18502859 G.Mercado, M.Tello, M.Marín, O.Monasterio, and R.Lagos (2008).
The production in vivo of microcin E492 with antibacterial activity depends on salmochelin and EntF.
  J Bacteriol, 190, 5464-5471.  
18264582 H.Fraga (2008).
Firefly luminescence: a historical perspective and recent developments.
  Photochem Photobiol Sci, 7, 146-158.  
18784082 H.Yonus, P.Neumann, S.Zimmermann, J.J.May, M.A.Marahiel, and M.T.Stubbs (2008).
Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains.
  J Biol Chem, 283, 32484-32491.
PDB codes: 3e7w 3e7x
18664286 J.R.Hillebrecht, and S.Chong (2008).
A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based.
  BMC Biotechnol, 8, 58.  
18953479 J...Moskaug, G.I.Borge, A.M.Fagervoll, I.Paur, H.Carlsen, and R.Blomhoff (2008).
Dietary polyphenols identified as intracellular protein kinase A inhibitors.
  Eur J Nutr, 47, 460-469.  
18264590 N.N.Ugarova (2008).
Interaction of firefly luciferase with substrates and their analogs: a study using fluorescence spectroscopy methods.
  Photochem Photobiol Sci, 7, 218-227.  
18336087 P.A.Thompson, S.Wang, L.J.Howett, M.M.Wang, R.Patel, A.Averill, R.E.Showalter, B.Li, and J.R.Appleman (2008).
Identification of ligand binding by protein stabilization: comparison of ATLAS with biophysical and enzymatic methods.
  Assay Drug Dev Technol, 6, 69-81.  
18528581 S.Takeda, S.Tsukiji, H.Ueda, and T.Nagamune (2008).
Covalent split protein fragment-DNA hybrids generated through N-terminus-specific modification of proteins by oligonucleotides.
  Org Biomol Chem, 6, 2187-2194.  
18305111 T.Abe, Y.Hashimoto, H.Hosaka, K.Tomita-Yokotani, and M.Kobayashi (2008).
Discovery of amide (peptide) bond synthetic activity in Acyl-CoA synthetase.
  J Biol Chem, 283, 11312-11321.  
18264581 V.Viviani (2008).
Introduction to the themed issue on bioluminescence.
  Photochem Photobiol Sci, 7, 145.  
17996401 Y.Oba, K.Iida, M.Ojika, and S.Inouye (2008).
Orthologous gene of beetle luciferase in non-luminous click beetle, Agrypnus binodulus (Elateridae), encodes a fatty acyl-CoA synthetase.
  Gene, 407, 169-175.  
18800165 Y.Yoshiike, R.Minai, Y.Matsuo, Y.R.Chen, T.Kimura, and A.Takashima (2008).
Amyloid oligomer conformation in a group of natively folded proteins.
  PLoS ONE, 3, e3235.  
17497934 A.S.Reger, J.M.Carney, and A.M.Gulick (2007).
Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase.
  Biochemistry, 46, 6536-6546.
PDB codes: 2p20 2p2b 2p2f 2p2j 2p2m 2p2q
17513367 A.Szarecka, Y.Xu, and P.Tang (2007).
Dynamics of firefly luciferase inhibition by general anesthetics: Gaussian and anisotropic network analyses.
  Biophys J, 93, 1895-1905.  
  17350930 C.Ingram-Smith, and K.S.Smith (2007).
AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization.
  Archaea, 2, 95.  
17617223 D.Kato, K.Teruya, H.Yoshida, M.Takeo, S.Negoro, and H.Ohta (2007).
New application of firefly luciferase--it can catalyze the enantioselective thioester formation of 2-arylpropanoic acid.
  FEBS J, 274, 3877-3885.  
17197704 N.K.h.Tafreshi, S.Hosseinkhani, M.Sadeghizadeh, M.Sadeghi, B.Ranjbar, and H.Naderi-Manesh (2007).
The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase.
  J Biol Chem, 282, 8641-8647.  
17922654 T.N.Vlasova, and N.N.Ugarova (2007).
Quenching of the fluorescence of Tyr and Trp residues of firefly luciferase from Luciola mingrelica by the substrates.
  Biochemistry (Mosc), 72, 962-967.  
17471476 V.R.Viviani, F.G.Arnoldi, F.T.Ogawa, and M.Brochetto-Braga (2007).
Few substitutions affect the bioluminescence spectra of Phrixotrix (Coleoptera: Phengodidae) luciferases: a site-directed mutagenesis survey.
  Luminescence, 22, 362-369.  
17051157 C.M.Kaiser, H.C.Chang, V.R.Agashe, S.K.Lakshmipathy, S.A.Etchells, M.Hayer-Hartl, F.U.Hartl, and J.M.Barral (2006).
Real-time observation of trigger factor function on translating ribosomes.
  Nature, 444, 455-460.  
16790016 E.Arias-Barrau, E.R.Olivera, A.Sandoval, G.Naharro, and J.M.Luengo (2006).
Acetyl-CoA synthetase from Pseudomonas putida U is the only acyl-CoA activating enzyme induced by acetate in this bacterium.
  FEMS Microbiol Lett, 260, 36-46.  
16632253 E.J.Drake, D.A.Nicolai, and A.M.Gulick (2006).
Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain.
  Chem Biol, 13, 409-419.
PDB code: 2fq1
16502391 E.Kim-Choi, C.Danilo, J.Kelly, R.Carroll, D.Shonnard, and I.Rybina (2006).
Creating a mutant luciferase resistant to HPV chemical inhibition by random mutagenesis and colony-level screening.
  Luminescence, 21, 135-142.  
16464627 G.Niu, G.Liu, Y.Tian, and H.Tan (2006).
SanJ, an ATP-dependent picolinate-CoA ligase, catalyzes the conversion of picolinate to picolinate-CoA during nikkomycin biosynthesis in Streptomyces ansochromogenes.
  Metab Eng, 8, 183-195.  
16420356 G.Soid-Raggi, O.Sánchez, and J.Aguirre (2006).
TmpA, a member of a novel family of putative membrane flavoproteins, regulates asexual development in Aspergillus nidulans.
  Mol Microbiol, 59, 854-869.  
20298115 J.C.Day, M.J.Chaichi, I.Najafil, and A.S.Whiteley (2006).
Genomic structure of the luciferase gene from the bioluminescent beetle, Nyctophila cf. caucasica.
  J Insect Sci, 6, 1-8.  
16385000 M.S.Svetlov, A.Kommer, V.A.Kolb, and A.S.Spirin (2006).
Effective cotranslational folding of firefly luciferase without chaperones of the Hsp70 family.
  Protein Sci, 15, 242-247.  
16887797 S.G.Van Lanen, S.Lin, P.C.Dorrestein, N.L.Kelleher, and B.Shen (2006).
Substrate specificity of the adenylation enzyme SgcC1 involved in the biosynthesis of the enediyne antitumor antibiotic C-1027.
  J Biol Chem, 281, 29633-29640.  
16541080 T.Nakatsu, S.Ichiyama, J.Hiratake, A.Saldanha, N.Kobashi, K.Sakata, and H.Kato (2006).
Structural basis for the spectral difference in luciferase bioluminescence.
  Nature, 440, 372-376.
PDB codes: 2d1q 2d1r 2d1s 2d1t
17090919 Y.Oba, K.Tanaka, and S.Inouye (2006).
Catalytic properties of domain-exchanged chimeric proteins between firefly luciferase and Drosophila fatty Acyl-CoA synthetase CG6178.
  Biosci Biotechnol Biochem, 70, 2739-2744.  
16207718 J.Hinnerwisch, B.G.Reid, W.A.Fenton, and A.L.Horwich (2005).
Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the ClpP protease.
  J Biol Chem, 280, 40838-40844.  
15691327 L.Di Vincenzo, I.Grgurina, and S.Pascarella (2005).
In silico analysis of the adenylation domains of the freestanding enzymes belonging to the eucaryotic nonribosomal peptide synthetase-like family.
  FEBS J, 272, 929-941.  
15665092 L.W.Schultz, L.Liu, M.Cegielski, and J.W.Hastings (2005).
Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole.
  Proc Natl Acad Sci U S A, 102, 1378-1383.
PDB code: 1vpr
16199668 M.S.Almeida, T.Herrmann, W.Peti, I.A.Wilson, and K.Wüthrich (2005).
NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima: implications for 216 homologous DUF59 proteins.
  Protein Sci, 14, 2880-2886.
PDB codes: 1uwd 1wcj
16336187 N.N.Ugarova, L.G.Maloshenok, I.V.Uporov, and M.I.Koksharov (2005).
Bioluminescence spectra of native and mutant firefly luciferases as a function of pH.
  Biochemistry (Mosc), 70, 1262-1267.  
15686561 S.K.Samanta, and C.S.Harwood (2005).
Use of the Rhodopseudomonas palustris genome sequence to identify a single amino acid that contributes to the activity of a coenzyme A ligase with chlorinated substrates.
  Mol Microbiol, 55, 1151-1159.  
16124832 V.R.Viviani, T.L.Oehlmeyer, F.G.Arnoldi, and M.R.Brochetto-Braga (2005).
A new firefly luciferase with bimodal spectrum: identification of structural determinants of spectral pH-sensitivity in firefly luciferases.
  Photochem Photobiol, 81, 843-848.  
15849423 Y.Oba, M.Sato, M.Ojika, and S.Inouye (2005).
Enzymatic and genetic characterization of firefly luciferase and Drosophila CG6178 as a fatty acyl-CoA synthetase.
  Biosci Biotechnol Biochem, 69, 819-828.  
15502355 B.Venkatesh, M.Arifuzzaman, H.Mori, T.Taguchi, and Y.Ohmiya (2004).
GroEL chaperone binding to beetle luciferases and the implications for refolding when co-expressed.
  Biosci Biotechnol Biochem, 68, 2096-2103.  
14695520 H.Fraga, J.C.Esteves da Silva, and R.Fontes (2004).
Identification of luciferyl adenylate and luciferyl coenzyme a synthesized by firefly luciferase.
  Chembiochem, 5, 110-115.  
15042094 O.A.Trivedi, P.Arora, V.Sridharan, R.Tickoo, D.Mohanty, and R.S.Gokhale (2004).
Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria.
  Nature, 428, 441-445.  
15215528 Q.Xu, Z.Xie, J.Ding, S.X.Lin, and G.Xu (2004).
Monoclonal antibodies assisting refolding of firefly luciferase.
  Protein Sci, 13, 1851-1858.  
15487945 R.Finking, and M.A.Marahiel (2004).
Biosynthesis of nonribosomal peptides1.
  Annu Rev Microbiol, 58, 453-488.  
15009023 T.C.Doyle, S.M.Burns, and C.H.Contag (2004).
In vivo bioluminescence imaging for integrated studies of infection.
  Cell Microbiol, 6, 303-317.  
15145952 Y.Hisanaga, H.Ago, N.Nakagawa, K.Hamada, K.Ida, M.Yamamoto, T.Hori, Y.Arii, M.Sugahara, S.Kuramitsu, S.Yokoyama, and M.Miyano (2004).
Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer.
  J Biol Chem, 279, 31717-31726.
PDB codes: 1ult 1v25 1v26
12685663 A.Kitayama, H.Yoshizaki, Y.Ohmiya, H.Ueda, and T.Nagamune (2003).
Creation of a thermostable firefly luciferase with pH-insensitive luminescent color.
  Photochem Photobiol, 77, 333-338.  
12820796 B.Loeliger, I.Caldelari, A.Bizzini, P.Stutzmann Meier, P.A.Majcherczyk, and P.Moreillon (2003).
Antibiotic-dependent correlation between drug-induced killing and loss of luminescence in Streptococcus gordonii expressing luciferase.
  Microb Drug Resist, 9, 123-131.  
12421821 C.Lindermayr, J.Fliegmann, and J.Ebel (2003).
Deletion of a single amino acid residue from different 4-coumarate:CoA ligases from soybean results in the generation of new substrate specificities.
  J Biol Chem, 278, 2781-2786.  
12700264 D.F.Ackerley, T.T.Caradoc-Davies, and I.L.Lamont (2003).
Substrate specificity of the nonribosomal peptide synthetase PvdD from Pseudomonas aeruginosa.
  J Bacteriol, 185, 2848-2855.  
12939790 L.J.Ming (2003).
Structure and function of "metalloantibiotics".
  Med Res Rev, 23, 697-762.  
12814641 M.Mukherji, C.J.Schofield, A.S.Wierzbicki, G.A.Jansen, R.J.Wanders, and M.D.Lloyd (2003).
The chemical biology of branched-chain lipid metabolism.
  Prog Lipid Res, 42, 359-376.  
12966144 P.N.Black, and C.C.DiRusso (2003).
Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification.
  Microbiol Mol Biol Rev, 67, 454.  
12964169 R.Finking, A.Neumüller, J.Solsbacher, D.Konz, G.Kretzschmar, M.Schweitzer, T.Krumm, and M.A.Marahiel (2003).
Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases.
  Chembiochem, 4, 903-906.  
11841231 A.R.Horswill, and J.C.Escalante-Semerena (2002).
Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis.
  Biochemistry, 41, 2379-2387.  
12353253 C.H.Contag, and B.D.Ross (2002).
It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology.
  J Magn Reson Imaging, 16, 378-387.  
12117758 C.H.Contag, and M.H.Bachmann (2002).
Advances in in vivo bioluminescence imaging of gene expression.
  Annu Rev Biomed Eng, 4, 235-260.  
12034706 J.D.Weimar, C.C.DiRusso, R.Delio, and P.N.Black (2002).
Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport.
  J Biol Chem, 277, 29369-29376.  
  11835675 N.Berovic, S.Pratontep, A.Bryant, A.Montouris, and R.G.Green (2002).
The kinetics of radiation damage to the protein luciferase and recovery of enzyme activity after irradiation.
  Radiat Res, 157, 122-127.  
12596852 N.Hattori, N.Kajiyama, M.Maeda, and S.Murakami (2002).
Mutant luciferase enzymes from fireflies with increased resistance to benzalkonium chloride.
  Biosci Biotechnol Biochem, 66, 2587-2593.  
12407671 N.N.Ugarova, and L.Y.Brovko (2002).
Protein structure and bioluminescent spectra for firefly bioluminescence.
  Luminescence, 17, 321-330.  
12202367 P.Tang, P.K.Mandal, and M.Zegarra (2002).
Effects of volatile anesthetic on channel structure of gramicidin A.
  Biophys J, 83, 1413-1420.  
11751893 S.Garavaglia, I.D'Angelo, M.Emanuelli, F.Carnevali, F.Pierella, G.Magni, and M.Rizzi (2002).
Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis.
  J Biol Chem, 277, 8524-8530.
PDB code: 1kku
12462650 V.R.Viviani, A.Uchida, W.Viviani, and Y.Ohmiya (2002).
The influence of Ala243 (Gly247), Arg215 and Thr226 (Asn230) on the bioluminescence spectra and pH-sensitivity of railroad worm, click beetle and firefly luciferases.
  Photochem Photobiol, 76, 538-544.  
12007636 X.C.Wang, J.Yang, W.Huang, L.He, J.T.Yu, Q.S.Lin, W.Li, and H.M.Zhou (2002).
Effects of removal of the N-terminal amino acid residues on the activity and conformation of firefly luciferase.
  Int J Biochem Cell Biol, 34, 983-991.  
11514230 A.M.Cerdeño, M.J.Bibb, and G.L.Challis (2001).
Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes.
  Chem Biol, 8, 817-829.  
11327861 B.R.Branchini, R.A.Magyar, M.H.Murtiashaw, and N.C.Portier (2001).
The role of active site residue arginine 218 in firefly luciferase bioluminescence.
  Biochemistry, 40, 2410-2418.  
11135188 H.Y.Hu, Q.Li, H.C.Cheng, and H.N.Du (2001).
beta-sheet structure formation of proteins in solid state as revealed by circular dichroism spectroscopy.
  Biopolymers, 62, 15-21.  
11576429 J.Ehlting, J.J.Shin, and C.J.Douglas (2001).
Identification of 4-coumarate:coenzyme A ligase (4CL) substrate recognition domains.
  Plant J, 27, 455-465.  
11112178 J.R.Hagler, and C.G.Jackson (2001).
Methods for marking insects: current techniques and future prospects.
  Annu Rev Entomol, 46, 511-543.  
11578933 T.Ozawa, and Y.Umezawa (2001).
Detection of protein-protein interactions in vivo based on protein splicing.
  Curr Opin Chem Biol, 5, 578-583.  
11007993 A.Sillero, and M.A.Sillero (2000).
Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase and several ligases.
  Pharmacol Ther, 87, 91.  
10820015 B.R.Branchini, M.H.Murtiashaw, R.A.Magyar, and S.M.Anderson (2000).
The role of lysine 529, a conserved residue of the acyl-adenylate-forming enzyme superfamily, in firefly luciferase.
  Biochemistry, 39, 5433-5440.  
10758506 C.K.Worley, N.Zenser, J.Ramos, D.Rouse, O.Leyser, A.Theologis, and J.Callis (2000).
Degradation of Aux/IAA proteins is essential for normal auxin signalling.
  Plant J, 21, 553-562.  
10986466 I.D'Angelo, N.Raffaelli, V.Dabusti, T.Lorenzi, G.Magni, and M.Rizzi (2000).
Structure of nicotinamide mononucleotide adenylyltransferase: a key enzyme in NAD(+) biosynthesis.
  Structure, 8, 993.
PDB code: 1f9a
10848974 J.Tyedmers, M.Kruse, M.Lerner, J.Demand, J.Höhfeld, J.Solsbacher, J.Volkmer, and R.Zimmermann (2000).
Assembly of heterodimeric luciferase after de novo synthesis of subunits in rabbit reticulocyte lysate involves hsc70 and hsp40 at a post-translational stage.
  Eur J Biochem, 267, 3575-3582.  
  10933494 J.W.Jung, J.H.An, K.B.Na, Y.S.Kim, and W.Lee (2000).
The active site and substrates binding mode of malonyl-CoA synthetase determined by transferred nuclear Overhauser effect spectroscopy, site-directed mutagenesis, and comparative modeling studies.
  Protein Sci, 9, 1294-1303.  
10946582 V.R.Viviani, and Y.Ohmiya (2000).
Bioluminescence color determinants of Phrixothrix railroad-worm luciferases: chimeric luciferases, site-directed mutagenesis of Arg 215 and guanidine effect.
  Photochem Photobiol, 72, 267-271.  
  11152120 Z.J.Liu, E.S.Vysotski, C.J.Chen, J.P.Rose, J.Lee, and B.C.Wang (2000).
Structure of the Ca2+-regulated photoprotein obelin at 1.7 A resolution determined directly from its sulfur substructure.
  Protein Sci, 9, 2085-2093.
PDB code: 1el4
10604290 Brovko LYu, Cherednikova EYu, Chikishev AYu, E.I.Dementieva, N.I.Koroteev, and N.N.Ugarova (1999).
Transient increase of tryptophan fluorescence of enzyme caused by photoexcitation of ligand in luciferase-luciferin complex.
  Biospectroscopy, 5, 378-384.  
10396600 C.C.DiRusso, P.N.Black, and J.D.Weimar (1999).
Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria.
  Prog Lipid Res, 38, 129-197.  
10021423 D.Konz, and M.A.Marahiel (1999).
How do peptide synthetases generate structural diversity?
  Chem Biol, 6, R39-R48.  
10531510 E.S.Vysotski, Z.J.Liu, J.Rose, B.C.Wang, and J.Lee (1999).
Preparation and preliminary study of crystals of the recombinant calcium-regulated photoprotein obelin from the bioluminescent hydroid Obelia longissima.
  Acta Crystallogr D Biol Crystallogr, 55, 1965-1966.  
10419464 H.Symmank, W.Saenger, and F.Bernhard (1999).
Analysis of engineered multifunctional peptide synthetases. Enzymatic characterization of surfactin synthetase domains in hybrid bimodular systems.
  J Biol Chem, 274, 21581-21588.  
10421756 T.Stachelhaus, H.D.Mootz, and M.A.Marahiel (1999).
The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases.
  Chem Biol, 6, 493-505.  
10461465 V.R.Viviani, A.C.Silva, G.L.Perez, R.V.Santelli, E.J.Bechara, and F.C.Reinach (1999).
Cloning and molecular characterization of the cDNA for the Brazilian larval click-beetle Pyrearinus termitilluminans luciferase.
  Photochem Photobiol, 70, 254-260.  
10387072 V.R.Viviani, E.J.Bechara, and Y.Ohmiya (1999).
Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures.
  Biochemistry, 38, 8271-8279.  
9878053 V.Thulasiraman, C.F.Yang, and J.Frydman (1999).
In vivo newly translated polypeptides are sequestered in a protected folding environment.
  EMBO J, 18, 85-95.  
9799491 B.R.Branchini, R.A.Magyar, M.H.Murtiashaw, S.M.Anderson, and M.Zimmer (1998).
Site-directed mutagenesis of histidine 245 in firefly luciferase: a proposed model of the active site.
  Biochemistry, 37, 15311-15319.  
9825705 D.Sung, and H.Kang (1998).
The N-terminal amino acid sequences of the firefly luciferase are important for the stability of the enzyme.
  Photochem Photobiol, 68, 749-753.  
9661574 J.M.Sonner, J.Li, and E.I.Eger (1998).
Desflurane and the nonimmobilizer 1,2-dichlorohexafluorocyclobutane suppress learning by a mechanism independent of the level of unconditioned stimulation.
  Anesth Analg, 87, 200-205.  
9674429 J.R.Glover, and S.Lindquist (1998).
Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins.
  Cell, 94, 73-82.  
9753692 M.Rizzi, M.Bolognesi, and A.Coda (1998).
A novel deamido-NAD+-binding site revealed by the trapped NAD-adenylate intermediate in the NAD+ synthetase structure.
  Structure, 6, 1129-1140.
PDB code: 2nsy
9761813 N.E.Chayen (1998).
Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques.
  Acta Crystallogr D Biol Crystallogr, 54, 8.  
9788915 N.P.Franks, A.Jenkins, E.Conti, W.R.Lieb, and P.Brick (1998).
Structural basis for the inhibition of firefly luciferase by a general anesthetic.
  Biophys J, 75, 2205-2211.
PDB code: 1ba3
9501915 S.A.Weston, R.Camble, J.Colls, G.Rosenbrock, I.Taylor, M.Egerton, A.D.Tucker, A.Tunnicliffe, A.Mistry, F.Mancia, la Fortelle, J.Irwin, G.Bricogne, and R.A.Pauptit (1998).
Crystal structure of the anti-fungal target N-myristoyl transferase.
  Nat Struct Biol, 5, 213-221.
PDB code: 1nmt
9786857 S.M.Stuhlsatz-Krouper, N.E.Bennett, and J.E.Schaffer (1998).
Substitution of alanine for serine 250 in the murine fatty acid transport protein inhibits long chain fatty acid transport.
  J Biol Chem, 273, 28642-28650.  
9891783 T.Wilson, and J.W.Hastings (1998).
  Annu Rev Cell Dev Biol, 14, 197-230.  
9558329 W.Kallow, H.von Döhren, and H.Kleinkauf (1998).
Penicillin biosynthesis: energy requirement for tripeptide precursor formation by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Acremonium chrysogenum.
  Biochemistry, 37, 5947-5952.  
9235934 B.R.Branchini, R.A.Magyar, K.M.Marcantonio, K.J.Newberry, J.G.Stroh, L.K.Hinz, and M.H.Murtiashaw (1997).
Identification of a firefly luciferase active site peptide using a benzophenone-based photooxidation reagent.
  J Biol Chem, 272, 19359-19364.  
9375250 C.A.Townsend (1997).
Structural studies of natural product biosynthetic proteins.
  Chem Biol, 4, 721-730.  
9434907 C.J.Schofield, J.E.Baldwin, M.F.Byford, I.Clifton, J.Hajdu, C.Hensgens, and P.Roach (1997).
Proteins of the penicillin biosynthesis pathway.
  Curr Opin Struct Biol, 7, 857-864.  
9250661 E.Conti, T.Stachelhaus, M.A.Marahiel, and P.Brick (1997).
Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S.
  EMBO J, 16, 4174-4183.
PDB code: 1amu
9212145 E.I.Eger, D.D.Koblin, M.J.Laster, V.Schurig, M.Juza, P.Ionescu, and D.Gong (1997).
Minimum alveolar anesthetic concentration values for the enantiomers of isoflurane differ minimally.
  Anesth Analg, 85, 188-192.  
  9352938 H.D.Mootz, and M.A.Marahiel (1997).
The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains.
  J Bacteriol, 179, 6843-6850.  
9667890 H.D.Mootz, and M.A.Marahiel (1997).
Biosynthetic systems for nonribosomal peptide antibiotic assembly.
  Curr Opin Chem Biol, 1, 543-551.  
9228050 J.F.Thompson, K.F.Geoghegan, D.B.Lloyd, A.J.Lanzetti, R.A.Magyar, S.M.Anderson, and B.R.Branchini (1997).
Mutation of a protease-sensitive region in firefly luciferase alters light emission properties.
  J Biol Chem, 272, 18766-18771.  
9281530 M.A.Marahiel (1997).
Protein templates for the biosynthesis of peptide antibiotics.
  Chem Biol, 4, 561-567.  
9288933 R.Dieckmann, M.Pavela-Vrancic, E.Pfeifer, H.von Döhren, and H.Kleinkauf (1997).
The adenylation domain of tyrocidine synthetase 1--structural and functional role of the interdomain linker region and the (S/T)GT(T/S)GXPKG core sequence.
  Eur J Biochem, 247, 1074-1082.  
9130695 S.Rüdiger, L.Germeroth, J.Schneider-Mergener, and B.Bukau (1997).
Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries.
  EMBO J, 16, 1501-1507.  
8703001 A.J.Fisher, T.B.Thompson, J.B.Thoden, T.O.Baldwin, and I.Rayment (1996).
The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions.
  J Biol Chem, 271, 21956-21968.
PDB code: 1luc
  8895556 M.Rizzi, C.Nessi, A.Mattevi, A.Coda, M.Bolognesi, and A.Galizzi (1996).
Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis.
  EMBO J, 15, 5125-5134.
PDB code: 1nsy
8805542 T.O.Baldwin (1996).
Firefly luciferase: the structure is known, but the mystery remains.
  Structure, 4, 223-228.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.