PDBsum entry 1l9z

Go to PDB code: 
protein dna_rna metals Protein-protein interface(s) links
Transcription/DNA PDB id
Protein chains
224 a.a. *
1084 a.a. *
1183 a.a. *
92 a.a. *
319 a.a. *
_ZN ×2
* Residue conservation analysis
PDB id:
Name: Transcription/DNA
Title: Thermus aquaticus RNA polymerase holoenzyme/fork-junction promoter DNA complex at 6.5 a resolution
Structure: Nontemplate DNA strand. Chain: u. Engineered: yes. Template DNA strand. Chain: t. Engineered: yes. RNA polymerase, alpha subunit. Chain: a, b. RNA polymerase, beta subunit.
Source: Synthetic: yes. Thermus aquaticus. Organism_taxid: 271. Gene: rpod. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Octamer (from PQS)
6.50Å     R-factor:   not given    
Authors: K.S.Murakami,S.Masuda,E.A.Campbell,O.Muzzin,S.A.Darst
Key ref:
K.S.Murakami et al. (2002). Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science, 296, 1285-1290. PubMed id: 12016307 DOI: 10.1126/science.1069595
27-Mar-02     Release date:   31-May-02    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
Q9KWU8  (RPOA_THEAQ) -  DNA-directed RNA polymerase subunit alpha
314 a.a.
224 a.a.
Protein chain
Pfam   ArchSchema ?
Q9KWU7  (RPOB_THEAQ) -  DNA-directed RNA polymerase subunit beta
1119 a.a.
1084 a.a.
Protein chain
Pfam   ArchSchema ?
Q9KWU6  (RPOC_THEAQ) -  DNA-directed RNA polymerase subunit beta'
1524 a.a.
1183 a.a.
Protein chain
Pfam   ArchSchema ?
Q9EVV4  (RPOZ_THEAQ) -  DNA-directed RNA polymerase subunit omega
99 a.a.
92 a.a.
Protein chain
Pfam   ArchSchema ?
Q9EZJ8  (Q9EZJ8_THEAQ) -  RNA polymerase sigma factor SigA
438 a.a.
319 a.a.
Key:    PfamA domain  Secondary structure

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D, E: E.C.  - DNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Nucleoside triphosphate + RNA(n) = diphosphate + RNA(n+1)
Nucleoside triphosphate
+ RNA(n)
= diphosphate
+ RNA(n+1)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     transcription initiation from bacterial-type RNA polymerase promoter   6 terms 
  Biochemical function     transferase activity     8 terms  


DOI no: 10.1126/science.1069595 Science 296:1285-1290 (2002)
PubMed id: 12016307  
Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex.
K.S.Murakami, S.Masuda, E.A.Campbell, O.Muzzin, S.A.Darst.
The crystal structure of Thermus aquaticus RNA polymerase holoenzyme (alpha2betabeta'omegasigmaA) complexed with a fork-junction promoter DNA fragment has been determined by fitting high-resolution x-ray structures of individual components into a 6.5-angstrom resolution map. The DNA lies across one face of the holoenzyme, completely outside the RNA polymerase active site channel. All sequence-specific contacts with core promoter elements are mediated by the sigma subunit. A universally conserved tryptophan is ideally positioned to stack on the exposed face of the base pair at the upstream edge of the transcription bubble. Universally conserved basic residues of the sigma subunit provide critical contacts with the DNA phosphate backbone and play a role in directing the melted DNA template strand into the RNA polymerase active site. The structure explains how holoenzyme recognizes promoters containing variably spaced -10 and -35 elements and provides the basis for models of the closed and open promoter complexes.
  Selected figure(s)  
Figure 1.
Fig. 1. Fork-junction DNA and electron density map. (A) Synthetic DNA oligonucleotides used for complex formation and crystallization. The numbers above denote the DNA position with respect to the transcription start site at +1. Downstream corresponds to the direction of RNAP movement during transcription. Mutations in the bottom DNA strand cause corresponding mutations in the RNA transcript, defining it as the template (versus the nontemplate) strand. The DNA sequence is derived from the full con promoter (4), with -35 and -10 elements (shaded yellow and labeled) as well as an extended -10 element (shaded red and labeled). (B) Stereo view of the Taq RNAP holoenzyme/fork-junction DNA complex. The -carbon backbone of is colored white, cyan, ' pink, and orange (the subunits are not visible). The DNA template strand is colored dark green, and the nontemplate strand is light green, except for the -35 and -10 elements, which are colored yellow. The visible structural domains of ( [2] and [4]) (1, 9) are labeled. The direction of transcription (downstream) is to the right. The experimental electron density map, calculated using observed amplitude (F[o]) coefficients, is shown (blue net, contoured at 1.5 ), and was computed using multiple isomorphous replacement phases (Table 1), followed by density modification. The view is sliced at a level just in front of the DNA to reveal the ' NH[2]-terminal Zn2+-binding domain and the associated Zn2+ (labeled, shown as a green sphere). Shown in red is a difference Fourier map, calculated using (|F[o]EMTS - F[o]native|) coefficients (Table 1), revealing the Hg-binding site that was used to locate the Zn2+-site.
Figure 3.
Fig. 3. Conformational changes. The superimposed -carbon backbones of the Taq RNAP holoenzyme alone (1) and the holoenzyme within the fork-junction DNA complex are shown as worms (view the same as Fig. 2A). The structure of holoenzyme alone is colored gray (core RNAP) and black ( ). The two modules that move in the holoenzyme-DNA complex as compared with the holoenzyme alone are colored as follows: clamp + [2], magenta and orange (respectively); flap + [4], blue and orange (respectively). The phosphate backbones of the DNA in the holoenzyme/DNA complex are shown as ribbons and colored green (template strand, t) and light green (nontemplate strand, nt). The downstream direction is indicated. The movements of the mobile modules from the holoenzyme structure to their positions in the holoenzyme-DNA complex are indicated by the arrows.
  The above figures are reprinted by permission from the AAAs: Science (2002, 296, 1285-1290) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21316373 C.Sheppard, B.Cámara, A.Shadrin, N.Akulenko, M.Liu, G.Baldwin, K.Severinov, E.Cota, S.Matthews, and S.R.Wigneshweraraj (2011).
Inhibition of Escherichia coli RNAp by T7 Gp2 protein: role of negatively charged strip of amino acid residues in Gp2.
  J Mol Biol, 407, 623-632.  
21386817 F.W.Martinez-Rucobo, S.Sainsbury, A.C.Cheung, and P.Cramer (2011).
Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
  EMBO J, 30, 1302-1310.
PDB code: 3qqc
21233849 F.Werner, and D.Grohmann (2011).
Evolution of multisubunit RNA polymerases in the three domains of life.
  Nat Rev Microbiol, 9, 85-98.  
21250781 S.H.Jun, M.J.Reichlen, M.Tajiri, and K.S.Murakami (2011).
Archaeal RNA polymerase and transcription regulation.
  Crit Rev Biochem Mol Biol, 46, 27-40.  
20562828 A.Tupin, M.Gualtieri, J.P.Leonetti, and K.Brodolin (2010).
The transcription inhibitor lipiarmycin blocks DNA fitting into the RNA polymerase catalytic site.
  EMBO J, 29, 2527-2537.  
  21029433 D.M.Hinton (2010).
Transcriptional control in the prereplicative phase of T4 development.
  Virol J, 7, 289.  
  21029432 E.P.Geiduschek, and G.A.Kassavetis (2010).
Transcription of the T4 late genes.
  Virol J, 7, 288.  
20615963 J.Chen, S.A.Darst, and D.Thirumalai (2010).
Promoter melting triggered by bacterial RNA polymerase occurs in three steps.
  Proc Natl Acad Sci U S A, 107, 12523-12528.  
20735776 J.Herrou, R.Foreman, A.Fiebig, and S.Crosson (2010).
A structural model of anti-anti-σ inhibition by a two-component receiver domain: the PhyR stress response regulator.
  Mol Microbiol, 78, 290-304.
PDB code: 3n0r
20088902 J.Schweer, H.Türkeri, B.Link, and G.Link (2010).
AtSIG6, a plastid sigma factor from Arabidopsis, reveals functional impact of cpCK2 phosphorylation.
  Plant J, 62, 192-202.  
19843224 K.Hollands, D.J.Lee, G.S.Lloyd, and S.J.Busby (2010).
Activation of sigma 28-dependent transcription in Escherichia coli by the cyclic AMP receptor protein requires an unusual promoter organization.
  Mol Microbiol, 75, 1098-1111.  
21149272 L.M.Bond, J.P.Peters, N.A.Becker, J.D.Kahn, and L.J.Maher (2010).
Gene repression by minimal lac loops in vivo.
  Nucleic Acids Res, 38, 8072-8082.  
20606072 M.K.Taha, S.T.Hedberg, M.Szatanik, E.Hong, C.Ruckly, R.Abad, S.Bertrand, F.Carion, H.Claus, A.Corso, R.Enríquez, S.Heuberger, W.Hryniewicz, K.A.Jolley, P.Kriz, M.Mollerach, M.Musilek, A.Neri, P.Olcén, M.Pana, A.Skoczynska, C.Sorhouet Pereira, P.Stefanelli, G.Tzanakaki, M.Unemo, J.A.Vázquez, U.Vogel, and I.Wasko (2010).
Multicenter study for defining the breakpoint for rifampin resistance in Neisseria meningitidis by rpoB sequencing.
  Antimicrob Agents Chemother, 54, 3651-3658.  
  20856905 N.Opalka, J.Brown, W.J.Lane, K.A.Twist, R.Landick, F.J.Asturias, and S.A.Darst (2010).
Complete structural model of Escherichia coli RNA polymerase from a hybrid approach.
  PLoS Biol, 8, 0.
PDB codes: 3lti 3lu0
20439713 P.C.Burrows, N.Joly, and M.Buck (2010).
A prehydrolysis state of an AAA+ ATPase supports transcription activation of an enhancer-dependent RNA polymerase.
  Proc Natl Acad Sci U S A, 107, 9376-9381.  
20070531 P.G.Devi, E.A.Campbell, S.A.Darst, and B.E.Nickels (2010).
Utilization of variably spaced promoter-like elements by the bacterial RNA polymerase holoenzyme during early elongation.
  Mol Microbiol, 75, 607-622.  
20483995 T.J.Gries, W.S.Kontur, M.W.Capp, R.M.Saecker, and M.T.Record (2010).
One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex.
  Proc Natl Acad Sci U S A, 107, 10418-10423.  
19895816 W.J.Lane, and S.A.Darst (2010).
Molecular evolution of multisubunit RNA polymerases: structural analysis.
  J Mol Biol, 395, 686-704.  
19965383 X.Liu, D.A.Bushnell, D.Wang, G.Calero, and R.D.Kornberg (2010).
Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism.
  Science, 327, 206-209.
PDB code: 3k7a
20534498 Y.Yuzenkova, and N.Zenkin (2010).
Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis.
  Proc Natl Acad Sci U S A, 107, 10878-10883.  
20094031 Z.A.Chen, A.Jawhari, L.Fischer, C.Buchen, S.Tahir, T.Kamenski, M.Rasmussen, L.Lariviere, J.C.Bukowski-Wills, M.Nilges, P.Cramer, and J.Rappsilber (2010).
Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry.
  EMBO J, 29, 717-726.  
19538447 A.D.Klocko, and K.M.Wassarman (2009).
6S RNA binding to Esigma(70) requires a positively charged surface of sigma(70) region 4.2.
  Mol Microbiol, 73, 152-164.  
19833764 A.Feklistov, and S.A.Darst (2009).
Promoter recognition by bacterial alternative sigma factors: the price of high selectivity?
  Genes Dev, 23, 2371-2375.  
19880312 A.Hirata, and K.S.Murakami (2009).
Archaeal RNA polymerase.
  Curr Opin Struct Biol, 19, 724-731.  
19578065 A.Rogozina, E.Zaychikov, M.Buckle, H.Heumann, and B.Sclavi (2009).
DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37 degrees C and results in the accumulation of an off-pathway intermediate.
  Nucleic Acids Res, 37, 5390-5404.  
19833768 B.M.Koo, V.A.Rhodius, G.Nonaka, P.L.deHaseth, and C.A.Gross (2009).
Reduced capacity of alternative sigmas to melt promoters ensures stringent promoter recognition.
  Genes Dev, 23, 2426-2436.  
  19903881 B.P.Hudson, J.Quispe, S.Lara-González, Y.Kim, H.M.Berman, E.Arnold, R.H.Ebright, and C.L.Lawson (2009).
Three-dimensional EM structure of an intact activator-dependent transcription initiation complex.
  Proc Natl Acad Sci U S A, 106, 19830-19835.
PDB code: 3iyd
19717606 C.L.Ross, K.S.Thomason, and T.M.Koehler (2009).
An extracytoplasmic function sigma factor controls beta-lactamase gene expression in Bacillus anthracis and other Bacillus cereus group species.
  J Bacteriol, 191, 6683-6693.  
19604473 C.Oubridge, D.A.Krummel, A.K.Leung, J.Li, and K.Nagai (2009).
Interpreting a low resolution map of human U1 snRNP using anomalous scatterers.
  Structure, 17, 930-938.  
19617357 C.W.Lennon, T.Gaal, W.Ross, and R.L.Gourse (2009).
Escherichia coli DksA binds to Free RNA polymerase with higher affinity than to RNA polymerase in an open complex.
  J Bacteriol, 191, 5854-5858.  
19109435 C.Y.Chen, C.C.Chang, C.F.Yen, M.T.Chiu, and W.H.Chang (2009).
Mapping RNA exit channel on transcribing RNA polymerase II by FRET analysis.
  Proc Natl Acad Sci U S A, 106, 127-132.  
19820686 D.Kostrewa, M.E.Zeller, K.J.Armache, M.Seizl, K.Leike, M.Thomm, and P.Cramer (2009).
RNA polymerase II-TFIIB structure and mechanism of transcription initiation.
  Nature, 462, 323-330.
PDB code: 3k1f
19735077 E.B.Johnston, P.J.Lewis, and R.Griffith (2009).
The interaction of Bacillus subtilis sigmaA with RNA polymerase.
  Protein Sci, 18, 2287-2297.  
18946472 G.A.Belogurov, M.N.Vassylyeva, A.Sevostyanova, J.R.Appleman, A.X.Xiang, R.Lira, S.E.Webber, S.Klyuyev, E.Nudler, I.Artsimovitch, and D.G.Vassylyev (2009).
Transcription inactivation through local refolding of the RNA polymerase structure.
  Nature, 457, 332-335.
PDB code: 3eql
19458260 H.Spåhr, G.Calero, D.A.Bushnell, and R.D.Kornberg (2009).
Schizosacharomyces pombe RNA polymerase II at 3.6-A resolution.
  Proc Natl Acad Sci U S A, 106, 9185-9190.
PDB code: 3h0g
19201973 I.Bakke, L.Berg, T.E.Aune, T.Brautaset, H.Sletta, A.Tøndervik, and S.Valla (2009).
Random mutagenesis of the PM promoter as a powerful strategy for improvement of recombinant-gene expression.
  Appl Environ Microbiol, 75, 2002-2011.  
19139410 I.G.Hook-Barnard, and D.M.Hinton (2009).
The promoter spacer influences transcription initiation via {sigma}70 region 1.1 of Escherichia coli RNA polymerase.
  Proc Natl Acad Sci U S A, 106, 737-742.  
18976666 L.A.Schroeder, T.J.Gries, R.M.Saecker, M.T.Record, M.E.Harris, and P.L.DeHaseth (2009).
Evidence for a tyrosine-adenine stacking interaction and for a short-lived open intermediate subsequent to initial binding of Escherichia coli RNA polymerase to promoter DNA.
  J Mol Biol, 385, 339-349.  
19926275 M.X.Ho, B.P.Hudson, K.Das, E.Arnold, and R.H.Ebright (2009).
Structures of RNA polymerase-antibiotic complexes.
  Curr Opin Struct Biol, 19, 715-723.  
19111618 N.R.Gassman, S.O.Ho, Y.Korlann, J.Chiang, Y.Wu, L.J.Perry, Y.Kim, and S.Weiss (2009).
In vivo assembly and single-molecule characterization of the transcription machinery from Shewanella oneidensis MR-1.
  Protein Expr Purif, 65, 66-76.  
19441027 P.Yan, T.Wang, G.J.Newton, T.V.Knyushko, Y.Xiong, D.J.Bigelow, T.C.Squier, and M.U.Mayer (2009).
A targeted releasable affinity probe (TRAP) for in vivo photocrosslinking.
  Chembiochem, 10, 1507-1518.  
19150431 R.A.Mooney, S.E.Davis, J.M.Peters, J.L.Rowland, A.Z.Ansari, and R.Landick (2009).
Regulator trafficking on bacterial transcription units in vivo.
  Mol Cell, 33, 97.  
  19838335 S.Imamura, and M.Asayama (2009).
Sigma factors for cyanobacterial transcription.
  Gene Regul Syst Bio, 3, 65-87.  
19400800 S.J.Busby (2009).
More pieces in the promoter jigsaw: recognition of -10 regions by alternative sigma factors.
  Mol Microbiol, 72, 809-811.  
19171784 S.T.Rutherford, C.L.Villers, J.H.Lee, W.Ross, and R.L.Gourse (2009).
Allosteric control of Escherichia coli rRNA promoter complexes by DksA.
  Genes Dev, 23, 236-248.  
19805193 V.Nagy, K.C.Hsia, E.W.Debler, M.Kampmann, A.M.Davenport, G.Blobel, and A.Hoelz (2009).
Structure of a trimeric nucleoporin complex reveals alternate oligomerization states.
  Proc Natl Acad Sci U S A, 106, 17693-17698.
PDB code: 3iko
18952176 W.Ross, and R.L.Gourse (2009).
Analysis of RNA polymerase-promoter complex formation.
  Methods, 47, 13-24.  
18978051 Z.Hua, X.Rao, X.Feng, X.Luo, Y.Liang, and L.Shen (2009).
Mutagenesis of region 4 of sigma 28 from Chlamydia trachomatis defines determinants for protein-protein and protein-DNA interactions.
  J Bacteriol, 191, 651-660.  
18641146 A.Kanda, K.Tsuneishi, A.Mori, K.Ohnishi, A.Kiba, and Y.Hikichi (2008).
An amino acid substitution at position 740 in sigma70 of Ralstonia solanacearum strain OE1-1 affects its in planta growth.
  Appl Environ Microbiol, 74, 5841-5844.  
18296515 A.Kumar, and C.P.Moran (2008).
Promoter activation by repositioning of RNA polymerase.
  J Bacteriol, 190, 3110-3117.  
18208528 A.T.Cavanagh, A.D.Klocko, X.Liu, and K.M.Wassarman (2008).
Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of sigma70.
  Mol Microbiol, 67, 1242-1256.  
18363796 B.Swingle, D.Thete, M.Moll, C.R.Myers, D.J.Schneider, and S.Cartinhour (2008).
Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads.
  Mol Microbiol, 68, 871-889.  
18538653 C.D.Kaplan, K.M.Larsson, and R.D.Kornberg (2008).
The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin.
  Mol Cell, 30, 547-556.
PDB code: 3cqz
18272182 C.E.Vrentas, T.Gaal, M.B.Berkmen, S.T.Rutherford, S.P.Haugen, D.G.Vassylyev, W.Ross, and R.L.Gourse (2008).
Still looking for the magic spot: the crystallographically defined binding site for ppGpp on RNA polymerase is unlikely to be responsible for rRNA transcription regulation.
  J Mol Biol, 377, 551-564.  
18995832 D.Bose, T.Pape, P.C.Burrows, M.Rappas, S.R.Wigneshweraraj, M.Buck, and X.Zhang (2008).
Organization of an activator-bound RNA polymerase holoenzyme.
  Mol Cell, 32, 337-346.  
18375176 E.A.Campbell, L.F.Westblade, and S.A.Darst (2008).
Regulation of bacterial RNA polymerase sigma factor activity: a structural perspective.
  Curr Opin Microbiol, 11, 121-127.  
18940669 E.C.Schwartz, A.Shekhtman, K.Dutta, M.R.Pratt, D.Cowburn, S.Darst, and T.W.Muir (2008).
A full-length group 1 bacterial sigma factor adopts a compact structure incompatible with DNA binding.
  Chem Biol, 15, 1091-1103.
PDB code: 2k6x
18957204 J.Mukhopadhyay, K.Das, S.Ismail, D.Koppstein, M.Jang, B.Hudson, S.Sarafianos, S.Tuske, J.Patel, R.Jansen, H.Irschik, E.Arnold, and R.H.Ebright (2008).
The RNA polymerase "switch region" is a target for inhibitors.
  Cell, 135, 295-307.
PDB code: 3dxj
18155246 L.A.Schroeder, M.E.Karpen, and P.L.deHaseth (2008).
Threonine 429 of Escherichia coli sigma 70 is a key participant in promoter DNA melting by RNA polymerase.
  J Mol Biol, 376, 153-165.  
18281386 M.Djordjevic, and R.Bundschuh (2008).
Formation of the open complex by bacterial RNA polymerase--a quantitative model.
  Biophys J, 94, 4233-4248.  
18574242 N.Barinova, K.Kuznedelov, K.Severinov, and A.Kulbachinskiy (2008).
Structural modules of RNA polymerase required for transcription from promoters containing downstream basal promoter element GGGA.
  J Biol Chem, 283, 22482-22489.  
18219644 N.Minakawa, Y.Kawano, S.Murata, N.Inoue, and A.Matsuda (2008).
Oligodeoxynucleotides containing 3-bromo-3-deazaadenine and 7-bromo-7-deazaadenine 2'-deoxynucleosides as chemical probes to investigate DNA-protein interactions.
  Chembiochem, 9, 464-470.  
18818199 P.England, L.F.Westblade, G.Karimova, V.Robbe-Saule, F.Norel, and A.Kolb (2008).
Binding of the unorthodox transcription activator, Crl, to the components of the transcription machinery.
  J Biol Chem, 283, 33455-33464.  
18280161 S.Borukhov, and E.Nudler (2008).
RNA polymerase: the vehicle of transcription.
  Trends Microbiol, 16, 126-134.  
18287032 S.P.Haugen, W.Ross, M.Manrique, and R.L.Gourse (2008).
Fine structure of the promoter-sigma region 1.2 interaction.
  Proc Natl Acad Sci U S A, 105, 3292-3297.  
18521075 S.P.Haugen, W.Ross, and R.L.Gourse (2008).
Advances in bacterial promoter recognition and its control by factors that do not bind DNA.
  Nat Rev Microbiol, 6, 507-519.  
18331472 S.Wigneshweraraj, D.Bose, P.C.Burrows, N.Joly, J.Schumacher, M.Rappas, T.Pape, X.Zhang, P.Stockley, K.Severinov, and M.Buck (2008).
Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor.
  Mol Microbiol, 68, 538-546.  
18532976 Y.Onda, Y.Yagi, Y.Saito, N.Takenaka, and Y.Toyoshima (2008).
Light induction of Arabidopsis SIG1 and SIG5 transcripts in mature leaves: differential roles of cryptochrome 1 and cryptochrome 2 and dual function of SIG5 in the recognition of plastid promoters.
  Plant J, 55, 968-978.  
17763923 Y.Tutar (2008).
Chemical Linkage at Allosteric Activation of E. coli cAMP Receptor Protein.
  Protein J, 27, 21-29.  
18021805 Y.Yuzenkova, N.Zenkin, and K.Severinov (2008).
Mapping of RNA polymerase residues that interact with bacteriophage Xp10 transcription antitermination factor p7.
  J Mol Biol, 375, 29-35.  
17675424 A.Rieu, S.Weidmann, D.Garmyn, P.Piveteau, and J.Guzzo (2007).
Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern.
  Appl Environ Microbiol, 73, 6125-6133.  
17302812 A.Typas, G.Becker, and R.Hengge (2007).
The molecular basis of selective promoter activation by the sigmaS subunit of RNA polymerase.
  Mol Microbiol, 63, 1296-1306.  
17470797 C.A.Davis, C.A.Bingman, R.Landick, M.T.Record, and R.M.Saecker (2007).
Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase.
  Proc Natl Acad Sci U S A, 104, 7833-7838.  
18160040 K.C.Hsia, P.Stavropoulos, G.Blobel, and A.Hoelz (2007).
Architecture of a coat for the nuclear pore membrane.
  Cell, 131, 1313-1326.
PDB codes: 3bg0 3bg1
  17329813 K.Okada, H.Ichihara, H.Takahashi, N.Fujita, A.Ishihama, and T.Hakoshima (2007).
Preparation and preliminary X-ray diffraction analysis of crystals of bacterial flagellar sigma factor sigma 28 in complex with the sigma 28-binding region of its antisigma factor, FlgM.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 196-199.  
17567604 L.A.Schroeder, A.J.Choi, and P.L.DeHaseth (2007).
The -11A of promoter DNA and two conserved amino acids in the melting region of sigma70 both directly affect the rate limiting step in formation of the stable RNA polymerase-promoter complex, but they do not necessarily interact.
  Nucleic Acids Res, 35, 4141-4153.  
17997097 L.L.Beck, T.G.Smith, and T.R.Hoover (2007).
Look, no hands! Unconventional transcriptional activators in bacteria.
  Trends Microbiol, 15, 530-537.  
17481658 M.Doucleff, J.G.Pelton, P.S.Lee, B.T.Nixon, and D.E.Wemmer (2007).
Structural basis of DNA recognition by the alternative sigma-factor, sigma54.
  J Mol Biol, 369, 1070-1078.
PDB codes: 2o8k 2o9l
17409075 N.Osato, Y.Suzuki, K.Ikeo, and T.Gojobori (2007).
Transcriptional interferences in cis natural antisense transcripts of humans and mice.
  Genetics, 176, 1299-1306.  
17268549 N.Zenkin, A.Kulbachinskiy, Y.Yuzenkova, A.Mustaev, I.Bass, K.Severinov, and K.Brodolin (2007).
Region 1.2 of the RNA polymerase sigma subunit controls recognition of the -10 promoter element.
  EMBO J, 26, 955-964.  
17670940 R.D.Kornberg (2007).
The molecular basis of eukaryotic transcription.
  Proc Natl Acad Sci U S A, 104, 12955-12961.  
17189297 R.K.Shultzaberger, Z.Chen, K.A.Lewis, and T.D.Schneider (2007).
Anatomy of Escherichia coli sigma70 promoters.
  Nucleic Acids Res, 35, 771-788.  
17253774 R.S.Turingan, C.Liu, M.E.Hawkins, and C.T.Martin (2007).
Structural confirmation of a bent and open model for the initiation complex of T7 RNA polymerase.
  Biochemistry, 46, 1714-1723.  
17275836 T.J.Santangelo, L.Cubonová, C.L.James, and J.N.Reeve (2007).
TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro.
  J Mol Biol, 367, 344-357.  
16798040 A.Feklistov, N.Barinova, A.Sevostyanova, E.Heyduk, I.Bass, I.Vvedenskaya, K.Kuznedelov, E.Merkiene, E.Stavrovskaya, S.Klimasauskas, V.Nikiforov, T.Heyduk, K.Severinov, and A.Kulbachinskiy (2006).
A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme.
  Mol Cell, 23, 97.  
17110578 A.N.Kapanidis, E.Margeat, S.O.Ho, E.Kortkhonjia, S.Weiss, and R.H.Ebright (2006).
Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism.
  Science, 314, 1144-1147.  
16420370 A.Typas, and R.Hengge (2006).
Role of the spacer between the -35 and -10 regions in sigmas promoter selectivity in Escherichia coli.
  Mol Microbiol, 59, 1037-1051.  
17081994 B.E.Nickels, C.W.Roberts, J.W.Roberts, and A.Hochschild (2006).
RNA-mediated destabilization of the sigma(70) region 4/beta flap interaction facilitates engagement of RNA polymerase by the Q antiterminator.
  Mol Cell, 24, 457-468.  
16819517 G.Miller, and S.Hahn (2006).
A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex.
  Nat Struct Mol Biol, 13, 603-610.  
16371706 G.Rosenbaum, R.W.Alkire, G.Evans, F.J.Rotella, K.Lazarski, R.G.Zhang, S.L.Ginell, N.Duke, I.Naday, J.Lazarz, M.J.Molitsky, L.Keefe, J.Gonczy, L.Rock, R.Sanishvili, M.A.Walsh, E.Westbrook, and A.Joachimiak (2006).
The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results.
  J Synchrotron Radiat, 13, 30-45.  
16341226 H.Kettenberger, A.Eisenführ, F.Brueckner, M.Theis, M.Famulok, and P.Cramer (2006).
Structure of an RNA polymerase II-RNA inhibitor complex elucidates transcription regulation by noncoding RNAs.
  Nat Struct Mol Biol, 13, 44-48.
PDB code: 2b63
17012380 I.Hook-Barnard, X.B.Johnson, and D.M.Hinton (2006).
Escherichia coli RNA polymerase recognition of a sigma70-dependent promoter requiring a -35 DNA element and an extended -10 TGn motif.
  J Bacteriol, 188, 8352-8359.  
16352826 J.E.Karlinsey, and K.T.Hughes (2006).
Genetic transplantation: Salmonella enterica serovar Typhimurium as a host to study sigma factor and anti-sigma factor interactions in genetically intractable systems.
  J Bacteriol, 188, 103-114.  
16635801 J.J.Barker (2006).
Antibacterial drug discovery and structure-based design.
  Drug Discov Today, 11, 391-404.  
16996538 K.Baxter, J.Lee, L.Minakhin, K.Severinov, and D.M.Hinton (2006).
Mutational analysis of sigma70 region 4 needed for appropriation by the bacteriophage T4 transcription factors AsiA and MotA.
  J Mol Biol, 363, 931-944.  
16846227 L.M.Hsu, I.M.Cobb, J.R.Ozmore, M.Khoo, G.Nahm, L.Xia, Y.Bao, and C.Ahn (2006).
Initial transcribed sequence mutations specifically affect promoter escape properties.
  Biochemistry, 45, 8841-8854.  
16377724 M.Gualtieri, P.Villain-Guillot, J.Latouche, J.P.Leonetti, and L.Bastide (2006).
Mutation in the Bacillus subtilis RNA polymerase beta' subunit confers resistance to lipiarmycin.
  Antimicrob Agents Chemother, 50, 401-402.  
16484205 M.J.Wilson, and I.L.Lamont (2006).
Mutational analysis of an extracytoplasmic-function sigma factor to investigate its interactions with RNA polymerase and DNA.
  J Bacteriol, 188, 1935-1942.  
17075066 M.K.Sorenson, and S.A.Darst (2006).
Disulfide cross-linking indicates that FlgM-bound and free sigma28 adopt similar conformations.
  Proc Natl Acad Sci U S A, 103, 16722-16727.  
16581837 O.Coban, D.C.Lamb, E.Zaychikov, H.Heumann, and G.U.Nienhaus (2006).
Conformational heterogeneity in RNA polymerase observed by single-pair FRET microscopy.
  Biophys J, 90, 4605-4617.  
17014715 P.E.Jacques, S.Rodrigue, L.Gaudreau, J.Goulet, and R.Brzezinski (2006).
Detection of prokaryotic promoters from the genomic distribution of hexanucleotide pairs.
  BMC Bioinformatics, 7, 423.  
16799558 P.Stavropoulos, G.Blobel, and A.Hoelz (2006).
Crystal structure and mechanism of human lysine-specific demethylase-1.
  Nat Struct Mol Biol, 13, 626-632.
PDB code: 2h94
17174884 R.Landick, and R.Kornberg (2006).
A long time in the making--the Nobel Prize for RNA polymerase.
  Cell, 127, 1087-1090.  
17098194 S.A.Kostek, P.Grob, S.De Carlo, J.S.Lipscomb, F.Garczarek, and E.Nogales (2006).
Molecular architecture and conformational flexibility of human RNA polymerase II.
  Structure, 14, 1691-1700.  
16601684 S.Nechaev, and E.P.Geiduschek (2006).
The role of an upstream promoter interaction in initiation of bacterial transcription.
  EMBO J, 25, 1700-1709.  
16777598 S.P.Haugen, M.B.Berkmen, W.Ross, T.Gaal, C.Ward, and R.L.Gourse (2006).
rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase.
  Cell, 125, 1069-1082.  
16900098 T.A.Steitz (2006).
Visualizing polynucleotide polymerase machines at work.
  EMBO J, 25, 3458-3468.  
16689632 T.Pan, and T.Sosnick (2006).
RNA folding during transcription.
  Annu Rev Biophys Biomol Struct, 35, 161-175.  
16957832 T.S.van Erp, S.Cuesta-López, and M.Peyrard (2006).
Bubbles and denaturation in DNA.
  Eur Phys J E Soft Matter, 20, 421-434.  
16524917 V.Trinh, M.F.Langelier, J.Archambault, and B.Coulombe (2006).
Structural perspective on mutations affecting the function of multisubunit RNA polymerases.
  Microbiol Mol Biol Rev, 70, 12-36.  
16903784 W.J.Lane, and S.A.Darst (2006).
The structural basis for promoter -35 element recognition by the group IV sigma factors.
  PLoS Biol, 4, e269.
PDB code: 2h27
16475805 W.S.Kontur, R.M.Saecker, C.A.Davis, M.W.Capp, and M.T.Record (2006).
Solute probes of conformational changes in open complex (RPo) formation by Escherichia coli RNA polymerase at the lambdaPR promoter: evidence for unmasking of the active site in the isomerization step and for large-scale coupled folding in the subsequent conversion to RPo.
  Biochemistry, 45, 2161-2177.  
16359326 Y.X.Huo, Z.X.Tian, M.Rappas, J.Wen, Y.C.Chen, C.H.You, X.Zhang, M.Buck, Y.P.Wang, and A.Kolb (2006).
Protein-induced DNA bending clarifies the architectural organization of the sigma54-dependent glnAp2 promoter.
  Mol Microbiol, 59, 168-180.  
15687384 A.J.Smith, and N.J.Savery (2005).
RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair.
  Nucleic Acids Res, 33, 755-764.  
16285917 A.N.Kapanidis, E.Margeat, T.A.Laurence, S.Doose, S.O.Ho, J.Mukhopadhyay, E.Kortkhonjia, V.Mekler, R.H.Ebright, and S.Weiss (2005).
Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysis.
  Mol Cell, 20, 347-356.  
  16252339 A.Y.Berezhnoy, and Y.G.Shckorbatov (2005).
Dependence of the E. coli promoter strength and physical parameters upon the nucleotide sequence.
  J Zhejiang Univ Sci B, 6, 1063-1068.  
16094453 B.Coulombe, and M.F.Langelier (2005).
Functional dissection of the catalytic mechanism of mammalian RNA polymerase II.
  Biochem Cell Biol, 83, 497-504.  
15761057 B.E.Nickels, S.J.Garrity, V.Mekler, L.Minakhin, K.Severinov, R.H.Ebright, and A.Hochschild (2005).
The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation.
  Proc Natl Acad Sci U S A, 102, 4488-4493.  
15738402 B.Sclavi, E.Zaychikov, A.Rogozina, F.Walther, M.Buckle, and H.Heumann (2005).
Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter.
  Proc Natl Acad Sci U S A, 102, 4706-4711.  
15626761 C.A.Davis, M.W.Capp, M.T.Record, and R.M.Saecker (2005).
The effects of upstream DNA on open complex formation by Escherichia coli RNA polymerase.
  Proc Natl Acad Sci U S A, 102, 285-290.  
16204187 C.E.Vrentas, T.Gaal, W.Ross, R.H.Ebright, and R.L.Gourse (2005).
Response of RNA polymerase to ppGpp: requirement for the omega subunit and relief of this requirement by DksA.
  Genes Dev, 19, 2378-2387.  
16039594 D.Jain, Y.Kim, K.L.Maxwell, S.Beasley, R.Zhang, G.N.Gussin, A.M.Edwards, and S.A.Darst (2005).
Crystal structure of bacteriophage lambda cII and its DNA complex.
  Mol Cell, 19, 259-269.
PDB codes: 1zpq 1zs4
15853878 D.Vingadassalom, A.Kolb, C.Mayer, T.Rybkine, E.Collatz, and I.Podglajen (2005).
An unusual primary sigma factor in the Bacteroidetes phylum.
  Mol Microbiol, 56, 888-902.  
15811922 J.E.Barrick, N.Sudarsan, Z.Weinberg, W.L.Ruzzo, and R.R.Breaker (2005).
6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter.
  RNA, 11, 774-784.  
15642698 L.Pérez-Lago, M.Salas, and A.Camacho (2005).
A precise DNA bend angle is essential for the function of the phage phi29 transcriptional regulator.
  Nucleic Acids Res, 33, 126-134.  
16285918 M.Raffaelle, E.I.Kanin, J.Vogt, R.R.Burgess, and A.Z.Ansari (2005).
Holoenzyme switching and stochastic release of sigma factors from RNA polymerase in vivo.
  Mol Cell, 20, 357-366.  
16249119 M.S.Bartlett (2005).
Determinants of transcription initiation by archaeal RNA polymerase.
  Curr Opin Microbiol, 8, 677-684.  
16285916 R.A.Mooney, S.A.Darst, and R.Landick (2005).
Sigma and RNA polymerase: an on-again, off-again relationship?
  Mol Cell, 20, 335-345.  
16159795 S.Phadtare, and K.Severinov (2005).
Extended -10 motif is critical for activity of the cspA promoter but does not contribute to low-temperature transcription.
  J Bacteriol, 187, 6584-6589.  
16122422 S.Tuske, S.G.Sarafianos, X.Wang, B.Hudson, E.Sineva, J.Mukhopadhyay, J.J.Birktoft, O.Leroy, S.Ismail, A.D.Clark, C.Dharia, A.Napoli, O.Laptenko, J.Lee, S.Borukhov, R.H.Ebright, and E.Arnold (2005).
Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation.
  Cell, 122, 541-552.
PDB codes: 1zyr 2cw0
16384189 T.S.van Erp, S.Cuesta-Lopez, J.G.Hagmann, and M.Peyrard (2005).
Can one predict DNA transcription start sites by studying bubbles?
  Phys Rev Lett, 95, 218104.  
15943816 T.Łoziński, and K.L.Wierzchowski (2005).
Mg2+-modulated KMnO4 reactivity of thymines in the open transcription complex reflects variation in the negative electrostatic potential along the separated DNA strands. Footprinting of Escherichia coli RNA polymerase complex at the lambdaP(R) promoter revisited.
  FEBS J, 272, 2838-2853.  
15650048 Y.Berghöfer-Hochheimer, C.Z.Lu, and C.A.Gross (2005).
Altering the interaction between sigma70 and RNA polymerase generates complexes with distinct transcription-elongation properties.
  Proc Natl Acad Sci U S A, 102, 1157-1162.  
15937491 Y.C.Lin, W.S.Choi, and J.D.Gralla (2005).
TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape.
  Nat Struct Mol Biol, 12, 603-607.  
15606780 A.Kulbachinskiy, A.Feklistov, I.Krasheninnikov, A.Goldfarb, and V.Nikiforov (2004).
Aptamers to Escherichia coli core RNA polymerase that sense its interaction with rifampicin, sigma-subunit and GreB.
  Eur J Biochem, 271, 4921-4931.  
15568992 B.J.Paul, W.Ross, T.Gaal, and R.L.Gourse (2004).
rRNA transcription in Escherichia coli.
  Annu Rev Genet, 38, 749-770.  
14704342 C.Checroun, P.Bordes, O.Leroy, A.Kolb, and C.Gutierrez (2004).
Interactions between the 2.4 and 4.2 regions of sigmaS, the stress-specific sigma factor of Escherichia coli, and the -10 and -35 promoter elements.
  Nucleic Acids Res, 32, 45-53.  
15004245 C.H.Choi, G.Kalosakas, K.O.Rasmussen, M.Hiromura, A.R.Bishop, and A.Usheva (2004).
DNA dynamically directs its own transcription initiation.
  Nucleic Acids Res, 32, 1584-1590.  
15282305 C.Jeronimo, M.F.Langelier, M.Zeghouf, M.Cojocaru, D.Bergeron, D.Baali, D.Forget, S.Mnaimneh, A.P.Davierwala, J.Pootoolal, M.Chandy, V.Canadien, B.K.Beattie, D.P.Richards, J.L.Workman, T.R.Hughes, J.Greenblatt, and B.Coulombe (2004).
RPAP1, a novel human RNA polymerase II-associated protein affinity purified with recombinant wild-type and mutated polymerase subunits.
  Mol Cell Biol, 24, 7043-7058.  
15102444 C.L.Lawson, D.Swigon, K.S.Murakami, S.A.Darst, H.M.Berman, and R.H.Ebright (2004).
Catabolite activator protein: DNA binding and transcription activation.
  Curr Opin Struct Biol, 14, 10-20.  
15035009 D.F.Browning, and S.J.Busby (2004).
The regulation of bacterial transcription initiation.
  Nat Rev Microbiol, 2, 57-65.  
14729958 D.Forget, M.F.Langelier, C.Thérien, V.Trinh, and B.Coulombe (2004).
Photo-cross-linking of a purified preinitiation complex reveals central roles for the RNA polymerase II mobile clamp and TFIIE in initiation mechanisms.
  Mol Cell Biol, 24, 1122-1131.  
15265034 E.Sarubbi, F.Monti, E.Corti, A.Miele, and E.Selva (2004).
Mode of action of the microbial metabolite GE23077, a novel potent and selective inhibitor of bacterial RNA polymerase.
  Eur J Biochem, 271, 3146-3154.  
15523475 F.J.Asturias (2004).
Another piece in the transcription initiation puzzle.
  Nat Struct Mol Biol, 11, 1031-1033.  
15093825 F.J.Asturias (2004).
RNA polymerase II structure, and organization of the preinitiation complex.
  Curr Opin Struct Biol, 14, 121-129.  
15130121 G.Orsini, S.Igonet, C.Pène, B.Sclavi, M.Buckle, M.Uzan, and A.Kolb (2004).
Phage T4 early promoters are resistant to inhibition by the anti-sigma factor AsiA.
  Mol Microbiol, 52, 1013-1028.  
15610738 H.Kettenberger, K.J.Armache, and P.Cramer (2004).
Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS.
  Mol Cell, 16, 955-965.
PDB codes: 1y1v 1y1w 1y1y 1y77
15479635 H.T.Chen, and S.Hahn (2004).
Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC.
  Cell, 119, 169-180.  
15547256 J.Ma, and M.M.Howe (2004).
Binding of the C-terminal domain of the alpha subunit of RNA polymerase to the phage mu middle promoter.
  J Bacteriol, 186, 7858-7864.  
15469913 K.Sakata-Sogawa, and N.Shimamoto (2004).
RNA polymerase can track a DNA groove during promoter search.
  Proc Natl Acad Sci U S A, 101, 14731-14735.  
15257291 L.J.Lambert, Y.Wei, V.Schirf, B.Demeler, and M.H.Werner (2004).
T4 AsiA blocks DNA recognition by remodeling sigma70 region 4.
  EMBO J, 23, 2952-2962.
PDB codes: 1tl6 1tlh 1tty
15118087 M.Liu, M.Tolstorukov, V.Zhurkin, S.Garges, and S.Adhya (2004).
A mutant spacer sequence between -35 and -10 elements makes the Plac promoter hyperactive and cAMP receptor protein-independent.
  Proc Natl Acad Sci U S A, 101, 6911-6916.  
15470504 P.C.Burrows, K.Severinov, M.Buck, and S.R.Wigneshweraraj (2004).
Reorganisation of an RNA polymerase-promoter DNA complex for DNA melting.
  EMBO J, 23, 4253-4263.  
15196470 P.Cramer (2004).
RNA polymerase II structure: from core to functional complexes.
  Curr Opin Genet Dev, 14, 218-226.  
15114340 S.Hahn (2004).
Structure and mechanism of the RNA polymerase II transcription machinery.
  Nat Struct Mol Biol, 11, 394-403.  
15470503 S.R.Wigneshweraraj, P.C.Burrows, S.Nechaev, N.Zenkin, K.Severinov, and M.Buck (2004).
Regulated communication between the upstream face of RNA polymerase and the beta' subunit jaw domain.
  EMBO J, 23, 4264-4274.  
14963488 S.Roy, H.M.Lim, M.Liu, and S.Adhya (2004).
Asynchronous basepair openings in transcription initiation: CRP enhances the rate-limiting step.
  EMBO J, 23, 869-875.  
15102443 T.A.Steitz (2004).
The structural basis of the transition from initiation to elongation phases of transcription, as well as translocation and strand separation, by T7 RNA polymerase.
  Curr Opin Struct Biol, 14, 4-9.  
15532065 V.V.Filichev, U.B.Christensen, E.B.Pedersen, B.R.Babu, and J.Wengel (2004).
Locked nucleic acids and intercalating nucleic acids in the design of easily denaturing nucleic acids: thermal stability studies.
  Chembiochem, 5, 1673-1679.  
15333692 W.V.Cannon, J.Schumacher, and M.Buck (2004).
Nucleotide-dependent interactions between a fork junction-RNA polymerase complex and an AAA+ transcriptional activator protein.
  Nucleic Acids Res, 32, 4596-4608.  
12746498 D.A.Bushnell, and R.D.Kornberg (2003).
Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription.
  Proc Natl Acad Sci U S A, 100, 6969-6973.
PDB code: 1nik
12949113 D.H.Wells, and S.R.Long (2003).
Mutations in rpoBC suppress the defects of a Sinorhizobium meliloti relA mutant.
  J Bacteriol, 185, 5602-5610.  
12782794 F.J.Asturias, and J.L.Craighead (2003).
RNA polymerase II at initiation.
  Proc Natl Acad Sci U S A, 100, 6893-6895.  
12700252 F.Narberhaus, and S.Balsiger (2003).
Structure-function studies of Escherichia coli RpoH (sigma32) by in vitro linker insertion mutagenesis.
  J Bacteriol, 185, 2731-2738.  
12951521 G.K.Agrawal, M.Asayama, and M.Shirai (2003).
Two distinct curved DNAs upstream of the light-responsive psbA gene in a cyanobacterium.
  Biosci Biotechnol Biochem, 67, 1817-1821.  
14536083 H.T.Chen, and S.Hahn (2003).
Binding of TFIIB to RNA polymerase II: Mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex.
  Mol Cell, 12, 437-447.  
12670993 J.Gowrishankar, K.Yamamoto, P.R.Subbarayan, and A.Ishihama (2003).
In vitro properties of RpoS (sigma(S)) mutants of Escherichia coli with postulated N-terminal subregion 1.1 or C-terminal region 4 deleted.
  J Bacteriol, 185, 2673-2679.  
14621989 J.Poznański, K.Bolewska, I.Zhukov, and K.L.Wierzchowski (2003).
Characterization of the low pH solution structure and dynamics of the region 4 of Escherichia coli RNA polymerase sigma70 subunit.
  Biochemistry, 42, 13438-13448.  
12746495 K.J.Armache, H.Kettenberger, and P.Cramer (2003).
Architecture of initiation-competent 12-subunit RNA polymerase II.
  Proc Natl Acad Sci U S A, 100, 6964-6968.
PDB code: 1nt9
12581657 K.S.Murakami, and S.A.Darst (2003).
Bacterial RNA polymerases: the wholo story.
  Curr Opin Struct Biol, 13, 31-39.  
12820881 M.F.Simeonov, R.J.Bieber Urbauer, J.M.Gilmore, K.Adelman, E.N.Brody, A.Niedziela-Majka, L.Minakhin, T.Heyduk, and J.L.Urbauer (2003).
Characterization of the interactions between the bacteriophage T4 AsiA protein and RNA polymerase.
  Biochemistry, 42, 7717-7726.  
12815340 M.Machius (2003).
Structural biology: a high-tech tool for biomedical research.
  Curr Opin Nephrol Hypertens, 12, 431-438.  
12540296 M.S.Paget, and J.D.Helmann (2003).
The sigma70 family of sigma factors.
  Genome Biol, 4, 203.  
14630944 R.A.Mooney, and R.Landick (2003).
Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal locations.
  Genes Dev, 17, 2839-2851.  
12732296 S.Borukhov, and E.Nudler (2003).
RNA polymerase holoenzyme: structure, function and biological implications.
  Curr Opin Microbiol, 6, 93.  
12753182 S.L.Dove, S.A.Darst, and A.Hochschild (2003).
Region 4 of sigma as a target for transcription regulation.
  Mol Microbiol, 48, 863-874.  
12618442 S.Mahren, and V.Braun (2003).
The FecI extracytoplasmic-function sigma factor of Escherichia coli interacts with the beta' subunit of RNA polymerase.
  J Bacteriol, 185, 1796-1802.  
14527281 S.Nechaev, and K.Severinov (2003).
Bacteriophage-induced modifications of host RNA polymerase.
  Annu Rev Microbiol, 57, 301-322.  
12756229 T.J.Santangelo, R.A.Mooney, R.Landick, and J.W.Roberts (2003).
RNA polymerase mutations that impair conversion to a termination-resistant complex by Q antiterminator proteins.
  Genes Dev, 17, 1281-1292.  
14527287 T.M.Gruber, and C.A.Gross (2003).
Multiple sigma subunits and the partitioning of bacterial transcription space.
  Annu Rev Microbiol, 57, 441-466.  
14555487 T.Naryshkina, A.Bruning, O.Gadal, and K.Severinov (2003).
Role of second-largest RNA polymerase I subunit Zn-binding domain in enzyme assembly.
  Eukaryot Cell, 2, 1046-1052.  
14502268 T.Xia, A.Frankel, T.T.Takahashi, J.Ren, and R.W.Roberts (2003).
Context and conformation dictate function of a transcription antitermination switch.
  Nat Struct Biol, 10, 812-819.  
12902215 V.Robbe-Saule, G.Algorta, I.Rouilhac, and F.Norel (2003).
Characterization of the RpoS status of clinical isolates of Salmonella enterica.
  Appl Environ Microbiol, 69, 4352-4358.  
14580350 W.H.Chung, J.L.Craighead, W.H.Chang, C.Ezeokonkwo, A.Bareket-Samish, R.D.Kornberg, and F.J.Asturias (2003).
RNA polymerase II/TFIIF structure and conserved organization of the initiation complex.
  Mol Cell, 12, 1003-1013.  
12756230 W.Ross, D.A.Schneider, B.J.Paul, A.Mertens, and R.L.Gourse (2003).
An intersubunit contact stimulating transcription initiation by E coli RNA polymerase: interaction of the alpha C-terminal domain and sigma region 4.
  Genes Dev, 17, 1293-1307.  
12374751 G.A.Kassavetis, A.Grove, and E.P.Geiduschek (2002).
Effects of DNA strand breaks on transcription by RNA polymerase III: insights into the role of TFIIIB and the polarity of promoter opening.
  EMBO J, 21, 5508-5515.  
12220487 J.Frank (2002).
A cold look at transcription.
  Structure, 10, 1156-1157.  
12176389 J.L.Craighead, W.H.Chang, and F.J.Asturias (2002).
Structure of yeast RNA polymerase II in solution: implications for enzyme regulation and interaction with promoter DNA.
  Structure, 10, 1117-1125.  
12080337 L.M.Hsu (2002).
Open season on RNA polymerase.
  Nat Struct Biol, 9, 502-504.  
12377565 M.B.Schmid (2002).
Structural proteomics: the potential of high-throughput structure determination.
  Trends Microbiol, 10, S27-S31.  
12468233 P.Aloy, and R.B.Russell (2002).
The third dimension for protein interactions and complexes.
  Trends Biochem Sci, 27, 633-638.  
12457703 R.Hengge-Aronis (2002).
Stationary phase gene regulation: what makes an Escherichia coli promoter sigmaS-selective?
  Curr Opin Microbiol, 5, 591-595.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.