spacer
spacer

PDBsum entry 1l8q

Go to PDB code: 
protein ligands metals links
DNA binding protein PDB id
1l8q
Jmol
Contents
Protein chain
321 a.a. *
Ligands
ADP
Metals
_MG
Waters ×47
* Residue conservation analysis
PDB id:
1l8q
Name: DNA binding protein
Title: Crystal structure of DNA replication initiation factor
Structure: Chromosomal replication initiator protein dnaa. Chain: a. Fragment: residues 76-399. Engineered: yes
Source: Aquifex aeolicus. Organism_taxid: 63363. Gene: dnaa. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.70Å     R-factor:   0.231     R-free:   0.255
Authors: J.P.Erzberger,M.M.Pirruccello,J.M.Berger
Key ref:
J.P.Erzberger et al. (2002). The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J, 21, 4763-4773. PubMed id: 12234917 DOI: 10.1093/emboj/cdf496
Date:
21-Mar-02     Release date:   25-Sep-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O66659  (DNAA_AQUAE) -  Chromosomal replication initiator protein DnaA
Seq:
Struc:
399 a.a.
321 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     regulation of DNA replication   2 terms 
  Biochemical function     nucleotide binding     6 terms  

 

 
DOI no: 10.1093/emboj/cdf496 EMBO J 21:4763-4773 (2002)
PubMed id: 12234917  
 
 
The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation.
J.P.Erzberger, M.M.Pirruccello, J.M.Berger.
 
  ABSTRACT  
 
The initiation of DNA replication is a key event in the cell cycle of all organisms. In bacteria, replication initiation occurs at specific origin sequences that are recognized and processed by an oligomeric complex of the initiator protein DnaA. We have determined the structure of the conserved core of the Aquifex aeolicus DnaA protein to 2.7 A resolution. The protein comprises an AAA+ nucleotide-binding fold linked through a long, helical connector to an all-helical DNA-binding domain. The structure serves as a template for understanding the physical consequences of a variety of DnaA mutations, and conserved motifs in the protein suggest how two critical aspects of origin processing, DNA binding and homo-oligomerization, are mediated. The spatial arrangement of these motifs in DnaA is similar to that of the eukaryotic-like archaeal replication initiation factor Cdc6/Orc1, demonstrating that mechanistic elements of origin processing may be conserved across bacterial, archaeal and eukaryotic domains of life.
 
  Selected figure(s)  
 
Figure 3.
Figure 3 (A) RIBBONS diagram highlighting the position of E.coli DnaA mutations mapped to the A.aeolicus DnaA model (blue spheres). Identification and phenotype of mutations can be found in Table II. The shaded oval (gray) marks the location of the 12 hinge region reported to play a role in cardiolipin-mediated effects. (B) RIBBONS diagrams of DnaA domain IV and trp repressor DNA-binding domain/DNA complex (Otwinowski et al., 1988) highlighting the closely related HTH motif in gold. Highly conserved residues in the basic loop and the DnaA signature sequences are indicated by spheres. Residues determined by mutagenesis to be critical for DNA binding in E.coli that map to the HTH and the basic loop motifs are highlighted in red. (C) RIBBONS model of the DnaA−DNA complex based on the trp repressor/DNA complex. The positions of the signature sequence motif and the basic loop are indicated.
Figure 4.
Figure 4 (A) RIBBONS diagram of DnaA and p97 (residues 191−458) showing the high degree of structural conservation across the AAA+ domain of the two proteins (the r.m.s.d. between the two proteins is 3.2 Å over 192 C[ ]positions). (B) RIBBONS diagram of the AAA+ region of a p97 dimer excised from the hexameric structure (inset) (Zhang et al., 2000) depicting the typical oligomeric arrangement of AAA+ protomers. The ADP bound at the interface is shown in black. The helix containing the Box VII motif is shown in cyan and the key arginine residue present at the dimerization interface is depicted as a magenta ball-and-stick model. (C) Inset: surface depiction (Nicholls et al., 1991) of the DnaA dimer modeled on p97, showing the high degree of complementarity between the monomers. The structural alignment of the AAA+ regions was generated using least-squares fitting of the DnaA AAA+ domain on each of two neighboring p97 AAA+ domains from the p97 hexamer. The exploded view reveals the clustering of conserved residues at the dimerization interface to form the bipartite nucleotide-interaction site. The degree of conservation among all known DnaA sequences is indicated by the degree of blue shading (Figure 1B); invariant (magenta) and chemically conserved residues (pink) are also highlighted. (D) RIBBONS diagram of the DnaA AAA+ domain (residues D77^S130−G290^N348) model dimer shown in blue and gold. Critical elements present at the predicted dimer interface are highlighted as in Figure 4B.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2002, 21, 4763-4773) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21227921 E.C.Dueber, A.Costa, J.E.Corn, S.D.Bell, and J.M.Berger (2011).
Molecular determinants of origin discrimination by Orc1 initiators in archaea.
  Nucleic Acids Res, 39, 3621-3631.  
21097494 J.Petersen, H.Brinkmann, M.Berger, T.Brinkhoff, O.Päuker, and S.Pradella (2011).
Origin and Evolution of a Novel DnaA-Like Plasmid Replication Type in Rhodobacterales.
  Mol Biol Evol, 28, 1229-1240.  
20130679 H.Kawakami, and T.Katayama (2010).
DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity.
  Biochem Cell Biol, 88, 49-62.  
20129058 M.Makowska-Grzyska, and J.M.Kaguni (2010).
Primase directs the release of DnaC from DnaB.
  Mol Cell, 37, 90.  
20157337 T.Katayama, S.Ozaki, K.Keyamura, and K.Fujimitsu (2010).
Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC.
  Nat Rev Microbiol, 8, 163-170.  
20071750 W.H.Grainger, C.Machón, D.J.Scott, and P.Soultanas (2010).
DnaB proteolysis in vivo regulates oligomerization and its localization at oriC in Bacillus subtilis.
  Nucleic Acids Res, 38, 2851-2864.  
19451214 A.C.Leonard, and J.E.Grimwade (2009).
Initiating chromosome replication in E. coli: it makes sense to recycle.
  Genes Dev, 23, 1145-1150.  
19833870 D.T.Miller, J.E.Grimwade, T.Betteridge, T.Rozgaja, J.J.Torgue, and A.C.Leonard (2009).
Bacterial origin recognition complexes direct assembly of higher-order DnaA oligomeric structures.
  Proc Natl Acad Sci U S A, 106, 18479-18484.  
19940251 G.Natrajan, M.F.Noirot-Gros, A.Zawilak-Pawlik, U.Kapp, and L.Terradot (2009).
The structure of a DnaA/HobA complex from Helicobacter pylori provides insight into regulation of DNA replication in bacteria.
  Proc Natl Acad Sci U S A, 106, 21115-21120.
PDB code: 2wp0
19400775 K.Boeneman, S.Fossum, Y.Yang, N.Fingland, K.Skarstad, and E.Crooke (2009).
Escherichia coli DnaA forms helical structures along the longitudinal cell axis distinct from MreB filaments.
  Mol Microbiol, 72, 645-657.  
19546317 K.L.Molt, V.A.Sutera, K.K.Moore, and S.T.Lovett (2009).
A role for nonessential domain II of initiator protein, DnaA, in replication control.
  Genetics, 183, 39-49.  
19019143 N.Nair, R.Dziedzic, R.Greendyke, S.Muniruzzaman, M.Rajagopalan, and M.V.Madiraju (2009).
Synchronous replication initiation in novel Mycobacterium tuberculosis dnaA cold-sensitive mutants.
  Mol Microbiol, 71, 291-304.  
19000695 Q.Xu, D.McMullan, P.Abdubek, T.Astakhova, D.Carlton, C.Chen, H.J.Chiu, T.Clayton, D.Das, M.C.Deller, L.Duan, M.A.Elsliger, J.Feuerhelm, J.Hale, G.W.Han, L.Jaroszewski, K.K.Jin, H.A.Johnson, H.E.Klock, M.W.Knuth, P.Kozbial, S.Sri Krishna, A.Kumar, D.Marciano, M.D.Miller, A.T.Morse, E.Nigoghossian, A.Nopakun, L.Okach, S.Oommachen, J.Paulsen, C.Puckett, R.Reyes, C.L.Rife, N.Sefcovic, C.Trame, H.van den Bedem, D.Weekes, K.O.Hodgson, J.Wooley, A.M.Deacon, A.Godzik, S.A.Lesley, and I.A.Wilson (2009).
A structural basis for the regulatory inactivation of DnaA.
  J Mol Biol, 385, 368-380.
PDB code: 3bos
18523437 A.T.McGeoch, and S.D.Bell (2008).
Extra-chromosomal elements and the evolution of cellular DNA replication machineries.
  Nat Rev Mol Cell Biol, 9, 569-574.  
18506095 E.Cho, N.Ogasawara, and S.Ishikawa (2008).
The functional analysis of YabA, which interacts with DnaA and regulates initiation of chromosome replication in Bacillus subtils.
  Genes Genet Syst, 83, 111-125.  
18329872 E.J.Enemark, and L.Joshua-Tor (2008).
On helicases and other motor proteins.
  Curr Opin Struct Biol, 18, 243-257.  
18502852 K.Fujimitsu, M.Su'etsugu, Y.Yamaguchi, K.Mazda, N.Fu, H.Kawakami, and T.Katayama (2008).
Modes of overinitiation, dnaA gene expression, and inhibition of cell division in a novel cold-sensitive hda mutant of Escherichia coli.
  J Bacteriol, 190, 5368-5381.  
18647240 N.D.Thomsen, and J.M.Berger (2008).
Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases.
  Mol Microbiol, 69, 1071-1090.  
18246107 O.Nielsen, and A.Løbner-Olesen (2008).
Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells.
  EMBO Rep, 9, 151-156.  
18312360 S.Fossum, G.De Pascale, C.Weigel, W.Messer, S.Donadio, and K.Skarstad (2008).
A robust screen for novel antibiotics: specific knockout of the initiator of bacterial DNA replication.
  FEMS Microbiol Lett, 281, 210-214.  
18957591 S.Nozaki, and T.Ogawa (2008).
Determination of the minimum domain II size of Escherichia coli DnaA protein essential for cell viability.
  Microbiology, 154, 3379-3384.  
18216012 S.Ozaki, H.Kawakami, K.Nakamura, N.Fujikawa, W.Kagawa, S.Y.Park, S.Yokoyama, H.Kurumizaka, and T.Katayama (2008).
A common mechanism for the ATP-DnaA-dependent formation of open complexes at the replication origin.
  J Biol Chem, 283, 8351-8362.
PDB codes: 2z4r 2z4s
19000607 S.Sugimoto, Abdullah-Al-Mahin, and K.Sonomoto (2008).
Molecular chaperones in lactic acid bacteria: physiological consequences and biochemical properties.
  J Biosci Bioeng, 106, 324-336.  
18849995 X.Zhang, and D.B.Wigley (2008).
The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins.
  Nat Struct Mol Biol, 15, 1223-1227.  
17761879 E.L.Dueber, J.E.Corn, S.D.Bell, and J.M.Berger (2007).
Replication origin recognition and deformation by a heterodimeric archaeal Orc1 complex.
  Science, 317, 1210-1213.
PDB code: 2qby
17683397 G.Natrajan, D.R.Hall, A.C.Thompson, I.Gutsche, and L.Terradot (2007).
Structural similarity between the DnaA-binding proteins HobA (HP1230) from Helicobacter pylori and DiaA from Escherichia coli.
  Mol Microbiol, 65, 995.
PDB code: 2uvp
17452366 H.Pei, J.Liu, J.Li, A.Guo, J.Zhou, and H.Xiang (2007).
Mechanism for the TtDnaA-Tt-oriC cooperative interaction at high temperature and duplex opening at an unusual AT-rich region in Thermoanaerobacter tengcongensis.
  Nucleic Acids Res, 35, 3087-3099.  
17850252 J.E.Grimwade, J.J.Torgue, K.C.McGarry, T.Rozgaja, S.T.Enloe, and A.C.Leonard (2007).
Mutational analysis reveals Escherichia coli oriC interacts with both DnaA-ATP and DnaA-ADP during pre-RC assembly.
  Mol Microbiol, 66, 428-439.  
17459114 J.Zakrzewska-Czerwińska, D.Jakimowicz, A.Zawilak-Pawlik, and W.Messer (2007).
Regulation of the initiation of chromosomal replication in bacteria.
  FEMS Microbiol Rev, 31, 378-387.  
17699754 K.Keyamura, N.Fujikawa, T.Ishida, S.Ozaki, M.Su'etsugu, K.Fujimitsu, W.Kagawa, S.Yokoyama, H.Kurumizaka, and T.Katayama (2007).
The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP DnaA-specific initiation complexes.
  Genes Dev, 21, 2083-2099.
PDB code: 2yva
17435790 M.L.Mott, and J.M.Berger (2007).
DNA replication initiation: mechanisms and regulation in bacteria.
  Nat Rev Microbiol, 5, 343-354.  
17680349 T.J.Lowery, J.G.Pelton, J.M.Chandonia, R.Kim, H.Yokota, and D.E.Wemmer (2007).
NMR structure of the N-terminal domain of the replication initiator protein DnaA.
  J Struct Funct Genomics, 8, 11-17.
PDB code: 2jmp
17420252 Y.Abe, T.Jo, Y.Matsuda, C.Matsunaga, T.Katayama, and T.Ueda (2007).
Structure and function of DnaA N-terminal domains: specific sites and mechanisms in inter-DnaA interaction and in DnaB helicase loading on oriC.
  J Biol Chem, 282, 17816-17827.
PDB code: 2e0g
16517983 A.Aranovich, G.Y.Gdalevsky, R.Cohen-Luria, I.Fishov, and A.H.Parola (2006).
Membrane-catalyzed nucleotide exchange on DnaA. Effect of surface molecular crowding.
  J Biol Chem, 281, 12526-12534.  
16549788 A.Ranjan, and M.Gossen (2006).
A structural role for ATP in the formation and stability of the human origin recognition complex.
  Proc Natl Acad Sci U S A, 103, 4864-4869.  
16923885 A.Smulczyk-Krawczyszyn, D.Jakimowicz, B.Ruban-Osmialowska, A.Zawilak-Pawlik, J.Majka, K.Chater, and J.Zakrzewska-Czerwinska (2006).
Cluster of DnaA boxes involved in regulation of Streptomyces chromosome replication: from in silico to in vivo studies.
  J Bacteriol, 188, 6184-6194.  
17003052 C.Ioannou, P.M.Schaeffer, N.E.Dixon, and P.Soultanas (2006).
Helicase binding to DnaI exposes a cryptic DNA-binding site during helicase loading in Bacillus subtilis.
  Nucleic Acids Res, 34, 5247-5258.  
17114060 C.Nievera, J.J.Torgue, J.E.Grimwade, and A.C.Leonard (2006).
SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC.
  Mol Cell, 24, 581-592.  
17042785 H.Kawakami, S.Ozaki, S.Suzuki, K.Nakamura, T.Senriuchi, M.Su'etsugu, K.Fujimitsu, and T.Katayama (2006).
The exceptionally tight affinity of DnaA for ATP/ADP requires a unique aspartic acid residue in the AAA+ sensor 1 motif.
  Mol Microbiol, 62, 1310-1324.  
16753031 J.M.Kaguni (2006).
DnaA: controlling the initiation of bacterial DNA replication and more.
  Annu Rev Microbiol, 60, 351-375.  
16689629 J.P.Erzberger, and J.M.Berger (2006).
Evolutionary relationships and structural mechanisms of AAA+ proteins.
  Annu Rev Biophys Biomol Struct, 35, 93.  
16829961 J.P.Erzberger, M.L.Mott, and J.M.Berger (2006).
Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling.
  Nat Struct Mol Biol, 13, 676-683.
PDB code: 2hcb
16829958 M.G.Clarey, J.P.Erzberger, P.Grob, A.E.Leschziner, J.M.Berger, E.Nogales, and M.Botchan (2006).
Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex.
  Nat Struct Mol Biol, 13, 684-690.  
16886004 M.O'Donnell, and D.Jeruzalmi (2006).
Helical proteins initiate replication of DNA helices.
  Nat Struct Mol Biol, 13, 665-667.  
16553890 M.V.Madiraju, M.Moomey, P.F.Neuenschwander, S.Muniruzzaman, K.Yamamoto, J.E.Grimwade, and M.Rajagopalan (2006).
The intrinsic ATPase activity of Mycobacterium tuberculosis DnaA promotes rapid oligomerization of DnaA on oriC.
  Mol Microbiol, 59, 1876-1890.  
16451174 N.Murai, K.Kurokawa, N.Ichihashi, M.Matsuo, and K.Sekimizu (2006).
Isolation of a temperature-sensitive dnaA mutant of Staphylococcus aureus.
  FEMS Microbiol Lett, 254, 19-26.  
16497662 S.Waga, and A.Zembutsu (2006).
Dynamics of DNA binding of replication initiation proteins during de novo formation of pre-replicative complexes in Xenopus egg extracts.
  J Biol Chem, 281, 10926-10934.  
15686547 A.C.Leonard, and J.E.Grimwade (2005).
Building a bacterial orisome: emergence of new regulatory features for replication origin unwinding.
  Mol Microbiol, 55, 978-985.  
16120674 A.I.Goranov, L.Katz, A.M.Breier, C.B.Burge, and A.D.Grossman (2005).
A transcriptional response to replication status mediated by the conserved bacterial replication protein DnaA.
  Proc Natl Acad Sci U S A, 102, 12932-12937.  
15838518 D.Y.Takeda, and A.Dutta (2005).
DNA replication and progression through S phase.
  Oncogene, 24, 2827-2843.  
15901724 H.Kawakami, K.Keyamura, and T.Katayama (2005).
Formation of an ATP-DnaA-specific initiation complex requires DnaA Arginine 285, a conserved motif in the AAA+ protein family.
  J Biol Chem, 280, 27420-27430.  
15802244 K.Boeneman, and E.Crooke (2005).
Chromosomal replication and the cell membrane.
  Curr Opin Microbiol, 8, 143-148.  
15878847 M.M.Felczak, L.A.Simmons, and J.M.Kaguni (2005).
An essential tryptophan of Escherichia coli DnaA protein functions in oligomerization at the E. coli replication origin.
  J Biol Chem, 280, 24627-24633.  
16045748 N.P.Robinson, and S.D.Bell (2005).
Origins of DNA replication in the three domains of life.
  FEBS J, 272, 3757-3766.  
16150924 R.Kasiviswanathan, J.H.Shin, and Z.Kelman (2005).
Interactions between the archaeal Cdc6 and MCM proteins modulate their biochemical properties.
  Nucleic Acids Res, 33, 4940-4950.  
15642730 Z.Li, J.L.Kitchen, K.Boeneman, P.Anand, and E.Crooke (2005).
Restoration of growth to acidic phospholipid-deficient cells by DnaA(L366K) is independent of its capacity for nucleotide binding and exchange and requires DnaA.
  J Biol Chem, 280, 9796-9801.  
15274929 C.L.Lawson, B.Benoff, T.Berger, H.M.Berman, and J.Carey (2004).
E. coli trp repressor forms a domain-swapped array in aqueous alcohol.
  Structure, 12, 1099-1108.
PDB code: 1mi7
15082529 D.L.Pappas, R.Frisch, and M.Weinreich (2004).
The NAD(+)-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication.
  Genes Dev, 18, 769-781.  
14765124 D.Remus, E.L.Beall, and M.R.Botchan (2004).
DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding.
  EMBO J, 23, 897-907.  
15556043 E.Schwob (2004).
Flexibility and governance in eukaryotic DNA replication.
  Curr Opin Microbiol, 7, 680-690.  
14752198 J.Holton, and T.Alber (2004).
Automated protein crystal structure determination using ELVES.
  Proc Natl Acad Sci U S A, 101, 1537-1542.
PDB codes: 1rb1 1rb4 1rb5 1rb6 3k7z
14978287 K.C.McGarry, V.T.Ryan, J.E.Grimwade, and A.C.Leonard (2004).
Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP.
  Proc Natl Acad Sci U S A, 101, 2811-2816.  
14756777 L.A.Simmons, A.M.Breier, N.R.Cozzarelli, and J.M.Kaguni (2004).
Hyperinitiation of DNA replication in Escherichia coli leads to replication fork collapse and inviability.
  Mol Microbiol, 51, 349-358.  
15371441 M.M.Felczak, and J.M.Kaguni (2004).
The box VII motif of Escherichia coli DnaA protein is required for DnaA oligomerization at the E. coli replication origin.
  J Biol Chem, 279, 51156-51162.  
15358831 S.A.Capaldi, and J.M.Berger (2004).
Biochemical characterization of Cdc6/Orc1 binding to the replication origin of the euryarchaeon Methanothermobacter thermoautotrophicus.
  Nucleic Acids Res, 32, 4821-4832.  
15470709 S.T.Browning, M.Castellanos, and M.L.Shuler (2004).
Robust control of initiation of prokaryotic chromosome replication: essential considerations for a minimal cell.
  Biotechnol Bioeng, 88, 575-584.  
15588282 T.Hinds, and S.J.Sandler (2004).
Allele specific synthetic lethality between priC and dnaAts alleles at the permissive temperature of 30 degrees C in E. coli K-12.
  BMC Microbiol, 4, 47.  
14504622 A.Stenlund (2003).
Initiation of DNA replication: lessons from viral initiator proteins.
  Nat Rev Mol Cell Biol, 4, 777-785.  
14527289 B.Grabowski, and Z.Kelman (2003).
Archeal DNA replication: eukaryal proteins in a bacterial context.
  Annu Rev Microbiol, 57, 487-516.  
12906833 J.A.James, C.R.Escalante, M.Yoon-Robarts, T.A.Edwards, R.M.Linden, and A.K.Aggarwal (2003).
Crystal structure of the SF3 helicase from adeno-associated virus type 2.
  Structure, 11, 1025-1035.
PDB code: 1s9h
12535074 L.A.Simmons, and J.M.Kaguni (2003).
The DnaAcos allele of Escherichia coli: hyperactive initiation is caused by substitution of A184V and Y271H, resulting in defective ATP binding and aberrant DNA replication control.
  Mol Microbiol, 47, 755-765.  
12864864 L.A.Simmons, M.Felczak, and J.M.Kaguni (2003).
DnaA Protein of Escherichia coli: oligomerization at the E. coli chromosomal origin is required for initiation and involves specific N-terminal amino acids.
  Mol Microbiol, 49, 849-858.  
12694608 L.M.Kelman, and Z.Kelman (2003).
Archaea: an archetype for replication initiation studies?
  Mol Microbiol, 48, 605-615.  
12966100 M.De Felice, L.Esposito, B.Pucci, F.Carpentieri, M.De Falco, M.Rossi, and F.M.Pisani (2003).
Biochemical characterization of a CDC6-like protein from the crenarchaeon Sulfolobus solfataricus.
  J Biol Chem, 278, 46424-46431.  
12682358 N.Fujikawa, H.Kurumizaka, O.Nureki, T.Terada, M.Shirouzu, T.Katayama, and S.Yokoyama (2003).
Structural basis of replication origin recognition by the DnaA protein.
  Nucleic Acids Res, 31, 2077-2086.
PDB code: 1j1v
12694607 R.Bernander (2003).
The archaeal cell cycle: current issues.
  Mol Microbiol, 48, 599-604.  
12586394 R.Giraldo (2003).
Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives.
  FEMS Microbiol Rev, 26, 533-554.  
12732304 W.D.Donachie, and G.W.Blakely (2003).
Coupling the initiation of chromosome replication to cell size in Escherichia coli.
  Curr Opin Microbiol, 6, 146-150.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.