spacer
spacer

PDBsum entry 1jof

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Isomerase PDB id
1jof

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 2 more) 365 a.a. *
Ligands
SO4 ×8
BME ×16
PIN ×2
Waters ×713
* Residue conservation analysis
PDB id:
1jof
Name: Isomerase
Title: Neurospora crassa 3-carboxy-cis,cis-mucoante lactonizing enzyme
Structure: Carboxy-cis,cis-muconate cyclase. Chain: a, b, c, d, e, f, g, h. Synonym: 3-carboxy-cis,cis-muconate lactonizing enzyme. Cmle. Engineered: yes
Source: Neurospora crassa. Organism_taxid: 5141. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Tetramer (from PQS)
Resolution:
2.50Å     R-factor:   0.212     R-free:   0.251
Authors: T.Kajander,M.C.Merckel,A.Thompson,A.M.Deacon,P.Mazur,J.W.Kozarich, A.Goldman
Key ref:
T.Kajander et al. (2002). The structure of Neurospora crassa 3-carboxy-cis,cis-muconate lactonizing enzyme, a beta propeller cycloisomerase. Structure, 10, 483-492. PubMed id: 11937053 DOI: 10.1016/S0969-2126(02)00744-X
Date:
28-Jul-01     Release date:   12-Apr-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P38677  (CMLE_NEUCR) -  Carboxy-cis,cis-muconate cyclase from Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987)
Seq:
Struc:
366 a.a.
365 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.5.5.1.5  - carboxy-cis,cis-muconate cyclase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Muconate Cycloisomerase
      Reaction: 3-carboxy-2,5-dihydro-5-oxofuran-2-acetate = 3-carboxy-cis,cis-muconate
3-carboxy-2,5-dihydro-5-oxofuran-2-acetate
= 3-carboxy-cis,cis-muconate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/S0969-2126(02)00744-X Structure 10:483-492 (2002)
PubMed id: 11937053  
 
 
The structure of Neurospora crassa 3-carboxy-cis,cis-muconate lactonizing enzyme, a beta propeller cycloisomerase.
T.Kajander, M.C.Merckel, A.Thompson, A.M.Deacon, P.Mazur, J.W.Kozarich, A.Goldman.
 
  ABSTRACT  
 
Muconate lactonizing enzymes (MLEs) convert cis,cis-muconates to muconolactones in microbes as part of the beta-ketoadipate pathway; some also dehalogenate muconate derivatives of xenobiotic haloaromatics. There are three different MLE classes unrelated by evolution. We present the X-ray structure of a eukaryotic MLE, Neurospora crassa 3-carboxy-cis,cis-muconate lactonizing enzyme (NcCMLE) at 2.5 A resolution, with a seven-bladed beta propeller fold. It is related neither to bacterial MLEs nor to other beta propeller enzymes, but is structurally similar to the G protein beta subunit. It reveals a novel metal-independent cycloisomerase motif unlike the bacterial metal cofactor MLEs. Together, the bacterial MLEs and NcCMLE structures comprise a striking structural example of functional convergence in enzymes for 1,2-addition-elimination of carboxylic acids. NcCMLE and bacterial MLEs may enhance the reaction rate differently: the former by electrophilic catalysis and the latter by electrostatic stabilization of the enolate.
 
  Selected figure(s)  
 
Figure 7.
Figure 7. Alignment of the MLE and CMLE Active SitesThe MLE (cyan) and CMLE (dark gold) active site residues around the docked substrates are shown, with the reactive substrate double bonds aligned, indicating the different binding modes with respect to the positive charge in the two active sites and the conserved hydrophobic pockets between the active sites.
 
  The above figure is reprinted by permission from Cell Press: Structure (2002, 10, 483-492) copyright 2002.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21262841 S.DiGuistini, Y.Wang, N.Y.Liao, G.Taylor, P.Tanguay, N.Feau, B.Henrissat, S.K.Chan, U.Hesse-Orce, S.M.Alamouti, C.K.Tsui, R.T.Docking, A.Levasseur, S.Haridas, G.Robertson, I.Birol, R.A.Holt, M.A.Marra, R.C.Hamelin, M.Hirst, S.J.Jones, J.Bohlmann, and C.Breuil (2011).
Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen.
  Proc Natl Acad Sci U S A, 108, 2504-2509.  
20525292 C.Kim, J.Basner, and B.Lee (2010).
Detecting internally symmetric protein structures.
  BMC Bioinformatics, 11, 303.  
20822442 M.Morar, and G.D.Wright (2010).
The genomic enzymology of antibiotic resistance.
  Annu Rev Genet, 44, 25-51.  
18832304 S.Tarighi, Q.Wei, M.Cámara, P.Williams, M.P.Fletcher, T.Kajander, and P.Cornelis (2008).
The PA4204 gene encodes a periplasmic gluconolactonase (PpgL) which is important for fitness of Pseudomonas aeruginosa.
  Microbiology, 154, 2979-2990.  
16401340 P.Gaudermann, I.Vogl, E.Zientz, F.J.Silva, A.Moya, R.Gross, and T.Dandekar (2006).
Analysis of and function predictions for previously conserved hypothetical or putative proteins in Blochmannia floridanus.
  BMC Microbiol, 6, 1.  
15821095 D.P.Kloer, S.Ruch, S.Al-Babili, P.Beyer, and G.E.Schulz (2005).
The structure of a retinal-forming carotenoid oxygenase.
  Science, 308, 267-269.
PDB codes: 2biw 2bix
15576773 L.C.Thomason, D.L.Court, A.R.Datta, R.Khanna, and J.L.Rosner (2004).
Identification of the Escherichia coli K-12 ybhE gene as pgl, encoding 6-phosphogluconolactonase.
  J Bacteriol, 186, 8248-8253.  
12547421 V.Anantharaman, L.Aravind, and E.V.Koonin (2003).
Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins.
  Curr Opin Chem Biol, 7, 12-20.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer