spacer
spacer

PDBsum entry 1jk3

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
1jk3

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
158 a.a. *
Ligands
BAT
Metals
_ZN ×2
_CA ×3
Waters ×211
* Residue conservation analysis
PDB id:
1jk3
Name: Hydrolase
Title: Crystal structure of human mmp-12 (macrophage elastase) at true atomic resolution
Structure: Macrophage metalloelastase. Chain: a. Fragment: catalytic domain. Synonym: mmp-12. Hme. Matrix metalloproteinase-12. Mmp-12. Metalloelastase hme. Engineered: yes. Mutation: yes. Other_details: complexed with batimastat (bb94), residue bat
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
1.09Å     R-factor:   0.169     R-free:   0.196
Authors: R.Lang,A.Kocourek,M.Braun,H.Tschesche,R.Huber,W.Bode,K.Maskos
Key ref:
R.Lang et al. (2001). Substrate specificity determinants of human macrophage elastase (MMP-12) based on the 1.1 A crystal structure. J Mol Biol, 312, 731-742. PubMed id: 11575928 DOI: 10.1006/jmbi.2001.4954
Date:
11-Jul-01     Release date:   28-Sep-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P39900  (MMP12_HUMAN) -  Macrophage metalloelastase from Homo sapiens
Seq:
Struc:
470 a.a.
158 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.3.4.24.65  - macrophage elastase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of soluble and insoluble elastin. Specific cleavages are also produced at 14-Ala-|-Leu-15 and 16-Tyr-|-Leu-17 in the B chain of insulin.
      Cofactor: Ca(2+); Zn(2+)

 

 
DOI no: 10.1006/jmbi.2001.4954 J Mol Biol 312:731-742 (2001)
PubMed id: 11575928  
 
 
Substrate specificity determinants of human macrophage elastase (MMP-12) based on the 1.1 A crystal structure.
R.Lang, A.Kocourek, M.Braun, H.Tschesche, R.Huber, W.Bode, K.Maskos.
 
  ABSTRACT  
 
The macrophage elastase enzyme (MMP-12) expressed mainly in alveolar macrophages has been identified in the mouse lung as the main destructive agent associated with cigarette smoking, which gives rise to emphysema, both directly via elastin degradation and indirectly by disturbing the proteinase/antiproteinase balance via inactivation of the alpha1-proteinase inhibitor (alpha1-PI), the antagonist of the leukocyte elastase. The catalytic domain of human recombinant MMP-12 has been crystallized in complex with the broad-specificity inhibitor batimastat (BB-94). The crystal structure analysis of this complex, determined using X-ray data to 1.1 A and refined to an R-value of 0.165, reveals an overall fold similar to that of other MMPs. However, the S-shaped double loop connecting strands III and IV is fixed closer to the beta-sheet and projects its His172 side-chain further into the rather hydrophobic active-site cleft, defining the S3 and the S1-pockets and separating them from each other to a larger extent than is observed in other MMPs. The S2-site is planar, while the characteristic S1'-subsite is a continuous tube rather than a pocket, in which the MMP-12-specific Thr215 replaces a Val residue otherwise highly conserved in almost all other MMPs. This alteration might allow MMP-12 to accept P1' Arg residues, making it unique among MMPs. The active-site cleft of MMP-12 is well equipped to bind and efficiently cleave the AlaMetPhe-LeuGluAla sequence in the reactive-site loop of alpha1-PI, as occurs experimentally. Similarities in contouring and particularly a common surface hydrophobicity both inside and distant from the active-site cleft explain why MMP-12 shares many substrates with matrilysin (MMP-7). The MMP-12 structure is an excellent template for the structure-based design of specific inhibitors for emphysema therapy and for the construction of mutants to clarify the role of this MMP.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Ribbon plot of cdMMP-12 (yellow) displayed in standard orientation. The cdMMP-12 ribbon shown together with the bound batimastat inhibitor in the normal conformation, is superimposed with the catalytic domains of MMP-1 (red, PDB accession code 966C), MMP-2 (dark blue, lacking the fibronectin type II domains for clarity, 1QIB), MMP-3 (green, 1CAQ), MMP-7 (dark orange, 1MMQ), MMP-8 (gray, 1MMB), MMP-12 (yellow), MMP-13 (light blue, 830C) and MMP-14 (violet red, 1BQQ). The catalytic and the structural zinc ion and the three bound calcium ions are displayed as pink and blue spheres, respectively, and the three His residues liganding the catalytic zinc and the characteristic Met236 are shown with all non-hydrogen atoms. The Figure was made with BOBSCRIPT[55] and Raster3D. [56]
Figure 4.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2001, 312, 731-742) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21223590 Y.H.Xu, L.Jia, B.Quinn, M.Zamzow, K.Stringer, B.Aronow, Y.Sun, W.Zhang, K.D.Setchell, and G.A.Grabowski (2011).
Global gene expression profile progression in Gaucher disease mouse models.
  BMC Genomics, 12, 20.  
20345904 A.Heinz, M.C.Jung, L.Duca, W.Sippl, S.Taddese, C.Ihling, A.Rusciani, G.Jahreis, A.S.Weiss, R.H.Neubert, and C.E.Schmelzer (2010).
Degradation of tropoelastin by matrix metalloproteinases--cleavage site specificities and release of matrikines.
  FEBS J, 277, 1939-1956.  
19604476 E.E.Chufán, M.De, B.A.Eipper, R.E.Mains, and L.M.Amzel (2009).
Amidation of bioactive peptides: the structure of the lyase domain of the amidating enzyme.
  Structure, 17, 965-973.
PDB codes: 3fvz 3fw0
19609998 I.Bertini, M.Fragai, C.Luchinat, M.Melikian, and C.Venturi (2009).
Characterisation of the MMP-12-elastin adduct.
  Chemistry, 15, 7842-7845.  
19000077 L.A.Cox (2009).
A mathematical model of protease-antiprotease homeostasis failure in chronic obstructive pulmonary disease (COPD).
  Risk Anal, 29, 576-586.  
19707688 M.Rouffet, C.Denhez, E.Bourguet, F.Bohr, and D.Guillaume (2009).
In silico study of MMP inhibition.
  Org Biomol Chem, 7, 3817-3825.  
18775985 A.S.Dabert-Gay, B.Czarny, L.Devel, F.Beau, E.Lajeunesse, S.Bregant, R.Thai, A.Yiotakis, and V.Dive (2008).
Molecular Determinants of Matrix Metalloproteinase-12 Covalent Modification by a Photoaffinity Probe: INSIGHTS INTO ACTIVITY-BASED PROBE DEVELOPMENT AND CONFORMATIONAL VARIABILITY OF MATRIX METALLOPROTEINASES.
  J Biol Chem, 283, 31058-31067.  
18004751 J.W.Torrance, M.W.Macarthur, and J.M.Thornton (2008).
Evolution of binding sites for zinc and calcium ions playing structural roles.
  Proteins, 71, 813-830.  
18362965 P.Geurink, T.Klein, M.Leeuwenburgh, G.van der Marel, H.Kauffman, R.Bischoff, and H.Overkleeft (2008).
A peptide hydroxamate library for enrichment of metalloproteinases: towards an affinity-based metalloproteinase profiling protocol.
  Org Biomol Chem, 6, 1244-1250.  
18539597 R.Bhaskaran, M.O.Palmier, J.L.Lauer-Fields, G.B.Fields, and S.R.Van Doren (2008).
MMP-12 catalytic domain recognizes triple helical peptide models of collagen V with exosites and high activity.
  J Biol Chem, 283, 21779-21788.  
17623656 A.R.Johnson, A.G.Pavlovsky, D.F.Ortwine, F.Prior, C.F.Man, D.A.Bornemeier, C.A.Banotai, W.T.Mueller, P.McConnell, C.Yan, V.Baragi, C.Lesch, W.H.Roark, M.Wilson, K.Datta, R.Guzman, H.K.Han, and R.D.Dyer (2007).
Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects.
  J Biol Chem, 282, 27781-27791.
PDB codes: 2ow9 2ozr
17163561 F.E.Jacobsen, J.A.Lewis, and S.M.Cohen (2007).
The Design of Inhibitors for Medicinally Relevant Metalloproteins.
  ChemMedChem, 2, 152-171.  
17997411 R.Bhaskaran, M.O.Palmier, N.A.Bagegni, X.Liang, and S.R.Van Doren (2007).
Solution structure of inhibitor-free human metalloelastase (MMP-12) indicates an internal conformational adjustment.
  J Mol Biol, 374, 1333-1344.
PDB code: 2poj
16632250 D.Hesek, M.Toth, S.O.Meroueh, S.Brown, H.Zhao, W.Sakr, R.Fridman, and S.Mobashery (2006).
Design and characterization of a metalloproteinase inhibitor-tethered resin for the detection of active MMPs in biological samples.
  Chem Biol, 13, 379-386.  
17065580 V.Sampath, K.Davis, A.P.Senft, T.R.Richardson, J.A.Kitzmiller, P.Y.Berclaz, and T.R.Korfhagen (2006).
Altered postnatal lung development in C3H/HeJ mice.
  Pediatr Res, 60, 663-668.  
15809432 I.Bertini, V.Calderone, M.Cosenza, M.Fragai, Y.M.Lee, C.Luchinat, S.Mangani, B.Terni, and P.Turano (2005).
Conformational variability of matrix metalloproteinases: beyond a single 3D structure.
  Proc Natl Acad Sci U S A, 102, 5334-5339.
PDB codes: 1rmz 1y93 1ycm 1z3j
14732707 V.Lukacova, Y.Zhang, M.Mackov, P.Baricic, S.Raha, J.A.Calvo, and S.Balaz (2004).
Similarity of binding sites of human matrix metalloproteinases.
  J Biol Chem, 279, 14194-14200.  
14532275 H.I.Park, Y.Jin, D.R.Hurst, C.A.Monroe, S.Lee, M.A.Schwartz, and Q.X.Sang (2003).
The intermediate S1' pocket of the endometase/matrilysin-2 active site revealed by enzyme inhibition kinetic studies, protein sequence analyses, and homology modeling.
  J Biol Chem, 278, 51646-51653.  
12887053 W.Bode, and K.Maskos (2003).
Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases.
  Biol Chem, 384, 863-872.  
12738779 W.Pan, M.Arnone, M.Kendall, R.H.Grafstrom, S.P.Seitz, Z.R.Wasserman, and C.F.Albright (2003).
Identification of peptide substrates for human MMP-11 (stromelysin-3) using phage display.
  J Biol Chem, 278, 27820-27827.  
11773076 D.V.Rozanov, B.Ghebrehiwet, T.I.Postnova, A.Eichinger, E.I.Deryugina, and A.Y.Strongin (2002).
The hemopexin-like C-terminal domain of membrane type 1 matrix metalloproteinase regulates proteolysis of a multifunctional protein, gC1qR.
  J Biol Chem, 277, 9318-9325.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer