PDBsum entry 1jbp

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
Protein chains
342 a.a. *
20 a.a. *
Waters ×168
* Residue conservation analysis
PDB id:
Name: Transferase
Title: Crystal structure of the catalytic subunit of camp- dependent protein kinase complexed with a substrate peptide, adp and detergent
Structure: Camp-dependent protein kinase, alpha-catalytic subunit. Chain: e. Synonym: pka c-alpha. Engineered: yes. Camp-dependent protein kinase inhibitor, muscle/brain form. Chain: s. Fragment: residues 5-24.
Source: Mus musculus. House mouse. Organism_taxid: 10090. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Other_details: the peptide was chemically synthesized. The sequence of the peptide is naturally found in mus musculus (mouse).
Biol. unit: Dimer (from PQS)
2.20Å     R-factor:   0.175    
Authors: Madhusudan,E.A.Trafny,N.H.Xuong,J.A.Adams,L.F.Ten Eyck, S.S.Taylor,J.M.Sowadski
Key ref:
Madhusudan et al. (1994). cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Protein Sci, 3, 176-187. PubMed id: 8003955 DOI: 10.1002/pro.5560030203
06-Jun-01     Release date:   27-Jun-01    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P05132  (KAPCA_MOUSE) -  cAMP-dependent protein kinase catalytic subunit alpha
351 a.a.
342 a.a.*
Protein chain
Pfam   ArchSchema ?
P61926  (IPKA_RABIT) -  cAMP-dependent protein kinase inhibitor alpha
76 a.a.
20 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chain E: E.C.  - cAMP-dependent protein kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + a protein = ADP + a phosphoprotein
+ protein
Bound ligand (Het Group name = ADP)
corresponds exactly
+ phosphoprotein
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     sperm midpiece   14 terms 
  Biological process     regulation of proteasomal protein catabolic process   18 terms 
  Biochemical function     nucleotide binding     13 terms  


DOI no: 10.1002/pro.5560030203 Protein Sci 3:176-187 (1994)
PubMed id: 8003955  
cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer.
Madhusudan, E.A.Trafny, N.H.Xuong, J.A.Adams, L.F.Ten Eyck, S.S.Taylor, J.M.Sowadski.
The crystal structure of ternary and binary substrate complexes of the catalytic subunit of cAMP-dependent protein kinase has been refined at 2.2 and 2.25 A resolution, respectively. The ternary complex contains ADP and a 20-residue substrate peptide, whereas the binary complex contains the phosphorylated substrate peptide. These 2 structures were refined to crystallographic R-factors of 17.5 and 18.1%, respectively. In the ternary complex, the hydroxyl oxygen OG of the serine at the P-site is 2.7 A from the OD1 atom of Asp 166. This is the first crystallographic evidence showing the direct interaction of this invariant carboxylate with a peptide substrate, and supports the predicted role of Asp 166 as a catalytic base and as an agent to position the serine -OH for nucleophilic attack. A comparison of the substrate and inhibitor ternary complexes places the hydroxyl oxygen of the serine 2.7 A from the gamma-phosphate of ATP and supports a direct in-line mechanism for phosphotransfer. In the binary complex, the phosphate on the Ser interacts directly with the epsilon N of Lys 168, another conserved residue. In the ternary complex containing ATP and the inhibitor peptide, Lys 168 interacts electrostatically with the gamma-phosphate of ATP (Zheng J, Knighton DR, Ten Eyck LF, Karlsson R, Xuong NH, Taylor SS, Sowadski JM, 1993, Biochemistry 32:2154-2161). Thus, Lys 168 remains closely associated with the phosphate in both complexes. A comparison of this binary complex structure with the recently solved structure of the ternary complex containing ATP and inhibitor peptide also reveals that the phosphate atom traverses a distance of about 1.5 A following nucleophilic attack by serine and transfer to the peptide. No major conformational changes of active site residues are seen when the substrate and product complexes are compared, although the binary complex with the phosphopeptide reveals localized changes in conformation in the region corresponding to the glycine-rich loop. The high B-factors for this loop support the conclusion that this structural motif is a highly mobile segment of the protein.
  Selected figure(s)  
Figure 5.
Fig. 5. Diagramofesentialresiduesthatcontribtetonucleotidebindingndcatalysis. A: Inhibitorternarycomplex. Dis- tancesaretakenfromtheternarycomplexof C:IPZO:ATP (Zhengetal.,1993~).Thecrystalsweresoaked in MnZ*, andboth theinhibitorandtheactivatingmetalsareshown (++) (Zhengetal., 1993~).The activating metal bridges the p- andy-phosphates, whereastheinhibitorymetalbridgesthe Y- andy-phospates.Thearrowbridgesthemethylsidechain f theP-siteAlaand they-phosphate of ATP. B: Substrateternarycomplex. C: Phosphorylatedsubstratebinarycomplex.
Figure 8.
ig. 8. Stereoviewshowingthesuperimposition f inaryandternarycomplexesandhigh- lighting localized chagesin the glycine-rich loop. Overallcomparison of the a-carbon back- bone of the pper omain(residues 15-127) of the ternary complexwith MnATP (red),thebi- nary withproductpeptide (blue), and the mammalianC-subunitbinarycomplexwih di-iodinated Tyr 7 PKI(5-24) (green). In hese 3 structures,thelargelobesaresuperimposedand are omitted from thedrawing, as theysho no major conformational changes.
  The above figures are reprinted from an Open Access publication published by the Protein Society: Protein Sci (1994, 3, 176-187) copyright 1994.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23064647 S.Hughes, F.Elustondo, A.Di Fonzo, F.G.Leroux, A.C.Wong, A.P.Snijders, S.J.Matthews, and P.Cherepanov (2012).
Crystal structure of human CDC7 kinase in complex with its activator DBF4.
  Nat Struct Mol Biol, 19, 1101-1107.
PDB codes: 4f99 4f9a 4f9b 4f9c
20299452 B.S.Hong, A.Allali-Hassani, W.Tempel, P.J.Finerty, F.Mackenzie, S.Dimov, M.Vedadi, and H.W.Park (2010).
Crystal structures of human choline kinase isoforms in complex with hemicholinium-3: single amino acid near the active site influences inhibitor sensitivity.
  J Biol Chem, 285, 16330-16340.
PDB codes: 3feg 3g15 3lq3
20524049 E.Pérez, and E.Cardemil (2010).
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: the relevance of Glu299 and Leu460 for nucleotide binding.
  Protein J, 29, 299-305.  
20351256 F.Shi, S.E.Telesco, Y.Liu, R.Radhakrishnan, and M.A.Lemmon (2010).
ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation.
  Proc Natl Acad Sci U S A, 107, 7692-7697.
PDB code: 3lmg
19901021 G.Bereta, B.Wang, P.D.Kiser, W.Baehr, G.F.Jang, and K.Palczewski (2010).
A functional kinase homology domain is essential for the activity of photoreceptor guanylate cyclase 1.
  J Biol Chem, 285, 1899-1908.  
20192289 J.Jung, Y.Sugita, and S.Ten-No (2010).
Moller-Plesset perturbation theory gradient in the generalized hybrid orbital quantum mechanical and molecular mechanical method.
  J Chem Phys, 132, 084106.  
19910306 N.Kumar, and D.Mohanty (2010).
Identification of substrates for Ser/Thr kinases using residue-based statistical pair potentials.
  Bioinformatics, 26, 189-197.  
  20044834 R.Krishnamurty, and D.J.Maly (2010).
Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors.
  ACS Chem Biol, 5, 121-138.  
19224897 E.D.Lew, C.M.Furdui, K.S.Anderson, and J.Schlessinger (2009).
The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations.
  Sci Signal, 2, ra6.  
19526051 F.Xu, P.Du, H.Shen, H.Hu, Q.Wu, J.Xie, and L.Yu (2009).
Correlated mutation analysis on the catalytic domains of serine/threonine protein kinases.
  PLoS One, 4, e5913.  
19886670 I.V.Khavrutskii, B.Grant, S.S.Taylor, and J.A.McCammon (2009).
A transition path ensemble study reveals a linchpin role for Mg(2+) during rate-limiting ADP release from protein kinase A.
  Biochemistry, 48, 11532-11545.  
19122195 J.Yang, E.J.Kennedy, J.Wu, M.S.Deal, J.Pennypacker, G.Ghosh, and S.S.Taylor (2009).
Contribution of Non-catalytic Core Residues to Activity and Regulation in Protein Kinase A.
  J Biol Chem, 284, 6241-6248.
PDB code: 2qur
20005845 K.Fukuda, S.Gupta, K.Chen, C.Wu, and J.Qin (2009).
The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions.
  Mol Cell, 36, 819-830.
PDB codes: 3kmu 3kmw
19039653 P.P.Kuntamalla, E.Kunttas-Tatli, U.Karandikar, C.P.Bishop, and A.P.Bidwai (2009).
Drosophila protein kinase CK2 is rendered temperature-sensitive by mutations of highly conserved residues flanking the activation segment.
  Mol Cell Biochem, 323, 49-60.  
18250157 A.Sabò, M.Lusic, A.Cereseto, and M.Giacca (2008).
Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription.
  Mol Cell Biol, 28, 2201-2212.  
18687337 J.C.Hagopian, C.T.Ma, B.R.Meade, C.P.Albuquerque, J.C.Ngo, G.Ghosh, P.A.Jennings, X.D.Fu, and J.A.Adams (2008).
Adaptable molecular interactions guide phosphorylation of the SR protein ASF/SF2 by SRPK1.
  J Mol Biol, 382, 894-909.  
19090997 T.Timm, A.Marx, S.Panneerselvam, E.Mandelkow, and E.M.Mandelkow (2008).
Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein.
  BMC Neurosci, 9, S9.  
17766419 D.L.Johnson, and J.B.Mahony (2007).
Chlamydophila pneumoniae PknD exhibits dual amino acid specificity and phosphorylates Cpn0712, a putative type III secretion YscD homolog.
  J Bacteriol, 189, 7549-7555.  
18056630 E.D.Lew, J.H.Bae, E.Rohmann, B.Wollnik, and J.Schlessinger (2007).
Structural basis for reduced FGFR2 activity in LADD syndrome: Implications for FGFR autoinhibition and activation.
  Proc Natl Acad Sci U S A, 104, 19802-19807.
PDB code: 3b2t
17222345 G.Neuberger, G.Schneider, and F.Eisenhaber (2007).
pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model.
  Biol Direct, 2, 1.  
18008170 M.Montenegro, M.Garcia-Viloca, A.González-Lafont, and J.M.Lluch (2007).
Comparative study of the prereactive Protein Kinase A Michaelis complex with Kemptide substrate.
  J Comput Aided Mol Des, 21, 603-615.  
16565070 K.L.Damm, and H.A.Carlson (2006).
Gaussian-weighted RMSD superposition of proteins: a structural comparison for flexible proteins and predicted protein structures.
  Biophys J, 90, 4558-4573.  
17009359 L.Milanese, A.Espinosa, J.M.Campos, M.A.Gallo, and A.Entrena (2006).
Insight into the inhibition of human choline kinase: homology modeling and molecular dynamics simulations.
  ChemMedChem, 1, 1216-1228.  
16522793 Y.Cheng, Y.Zhang, and J.A.McCammon (2006).
How does activation loop phosphorylation modulate catalytic activity in the cAMP-dependent protein kinase: a theoretical study.
  Protein Sci, 15, 672-683.  
16647110 Z.A.Knight, B.Gonzalez, M.E.Feldman, E.R.Zunder, D.D.Goldenberg, O.Williams, R.Loewith, D.Stokoe, A.Balla, B.Toth, T.Balla, W.A.Weiss, R.L.Williams, and K.M.Shokat (2006).
A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling.
  Cell, 125, 733-747.
PDB codes: 2chw 2chx 2chz
15608120 B.Lu, C.F.Wong, and J.A.McCammon (2005).
Release of ADP from the catalytic subunit of protein kinase A: a molecular dynamics simulation study.
  Protein Sci, 14, 159-168.  
16149114 C.Drahl, B.F.Cravatt, and E.J.Sorensen (2005).
Protein-reactive natural products.
  Angew Chem Int Ed Engl, 44, 5788-5809.  
15731862 J.López-Prados, F.Cuevas, N.C.Reichardt, Paz, E.Q.Morales, and M.Martín-Lomas (2005).
Design and synthesis of inositolphosphoglycan putative insulin mediators.
  Org Biomol Chem, 3, 764-786.  
16253959 J.Wu, J.Yang, N.Kannan, Madhusudan, N.H.Xuong, L.F.Ten Eyck, and S.S.Taylor (2005).
Crystal structure of the E230Q mutant of cAMP-dependent protein kinase reveals an unexpected apoenzyme conformation and an extended N-terminal A helix.
  Protein Sci, 14, 2871-2879.
PDB code: 1syk
15273306 N.Kannan, and A.F.Neuwald (2004).
Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha.
  Protein Sci, 13, 2059-2077.  
14596595 B.E.Aubol, B.Nolen, J.Shaffer, G.Ghosh, and J.A.Adams (2003).
Novel destabilization of nucleotide binding by the gamma phosphate of ATP in the yeast SR protein kinase Sky1p.
  Biochemistry, 42, 12813-12820.  
13679512 B.Huang, G.Zeng, A.Y.Ng, and M.Cai (2003).
Identification of novel recognition motifs and regulatory targets for the yeast actin-regulating kinase Prk1p.
  Mol Biol Cell, 14, 4871-4884.  
12502784 R.I.Brinkworth, R.A.Breinl, and B.Kobe (2003).
Structural basis and prediction of substrate specificity in protein serine/threonine kinases.
  Proc Natl Acad Sci U S A, 100, 74-79.  
11933072 E.Y.Chan, S.L.Stang, D.A.Bottorff, and J.C.Stone (2002).
Mutations in conserved regions 1, 2, and 3 of Raf-1 that activate transforming activity.
  Mol Carcinog, 33, 189-197.  
11972780 J.M.Neu, S.V.MacMillan, J.R.Nodwell, and G.D.Wright (2002).
StoPK-1, a serine/threonine protein kinase from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009, affects oxidative stress response.
  Mol Microbiol, 44, 417-430.  
11896404 Madhusudan, P.Akamine, N.H.Xuong, and S.S.Taylor (2002).
Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase.
  Nat Struct Biol, 9, 273-277.
PDB code: 1l3r
11954055 R.I.Brinkworth, J.Horne, and B.Kobe (2002).
A computational analysis of substrate binding strength by phosphorylase kinase and protein kinase A.
  J Mol Recognit, 15, 104-111.  
12359875 S.Fieulaine, S.Morera, S.Poncet, I.Mijakovic, A.Galinier, J.Janin, J.Deutscher, and S.Nessler (2002).
X-ray structure of a bifunctional protein kinase in complex with its protein substrate HPr.
  Proc Natl Acad Sci U S A, 99, 13437-13441.
PDB codes: 1kkl 1kkm
11329267 D.Wang, X.Y.Huang, and P.A.Cole (2001).
Molecular determinants for Csk-catalyzed tyrosine phosphorylation of the Src tail.
  Biochemistry, 40, 2004-2010.  
  11152133 M.C.Hutter, and V.Helms (2000).
Phosphoryl transfer by a concerted reaction mechanism in UMP/CMP-kinase.
  Protein Sci, 9, 2225-2231.  
  11045627 Q.Ni, J.Shaffer, and J.A.Adams (2000).
Insights into nucleotide binding in protein kinase A using fluorescent adenosine derivatives.
  Protein Sci, 9, 1818-1827.  
10889042 R.T.Aimes, W.Hemmer, and S.S.Taylor (2000).
Serine-53 at the tip of the glycine-rich loop of cAMP-dependent protein kinase: role in catalysis, P-site specificity, and interaction with inhibitors.
  Biochemistry, 39, 8325-8332.  
11052681 T.J.Hirai, I.Tsigelny, and J.A.Adams (2000).
Catalytic assessment of the glycine-rich loop of the v-Fps oncoprotein using site-directed mutagenesis.
  Biochemistry, 39, 13276-13284.  
9889150 D.M.Daigle, G.A.McKay, P.R.Thompson, and G.D.Wright (1999).
Aminoglycoside antibiotic phosphotransferases are also serine protein kinases.
  Chem Biol, 6, 11-18.  
10479734 I.Tsigelny, J.P.Greenberg, S.Cox, W.L.Nichols, S.S.Taylor, and L.F.Ten Eyck (1999).
600 ps molecular dynamics reveals stable substructures and flexible hinge points in cAMP dependent protein kinase.
  Biopolymers, 50, 513-524.  
10220345 J.Shaffer, and J.A.Adams (1999).
An ATP-linked structural change in protein kinase A precedes phosphoryl transfer under physiological magnesium concentrations.
  Biochemistry, 38, 5572-5581.  
  10631989 M.C.Hutter, and V.Helms (1999).
Influence of key residues on the reaction mechanism of the cAMP-dependent protein kinase.
  Protein Sci, 8, 2728-2733.  
10029530 N.Narayana, T.C.Diller, K.Koide, M.E.Bunnage, K.C.Nicolaou, L.L.Brunton, N.H.Xuong, L.F.Ten Eyck, and S.S.Taylor (1999).
Crystal structure of the potent natural product inhibitor balanol in complex with the catalytic subunit of cAMP-dependent protein kinase.
  Biochemistry, 38, 2367-2376.
PDB code: 1bx6
10545198 V.T.Skamnaki, D.J.Owen, M.E.Noble, E.D.Lowe, G.Lowe, N.G.Oikonomakos, and L.N.Johnson (1999).
Catalytic mechanism of phosphorylase kinase probed by mutational studies.
  Biochemistry, 38, 14718-14730.
PDB code: 1ql6
9425036 D.Sondhi, W.Xu, Z.Songyang, M.J.Eck, and P.A.Cole (1998).
Peptide and protein phosphorylation by protein tyrosine kinase Csk: insights into specificity and mechanism.
  Biochemistry, 37, 165-172.  
9817025, J.J.Wu, and K.S.Lam (1998).
Protein tyrosine kinases: structure, substrate specificity, and drug discovery.
  Biopolymers, 47, 197-223.  
9843424 J.Lisnock, A.Tebben, B.Frantz, E.A.O'Neill, G.Croft, S.J.O'Keefe, B.Li, C.Hacker, Laszlo, A.Smith, B.Libby, N.Liverton, J.Hermes, and P.LoGrasso (1998).
Molecular basis for p38 protein kinase inhibitor specificity.
  Biochemistry, 37, 16573-16581.  
9539704 J.Szczepanowska, U.Ramachandran, C.J.Herring, J.M.Gruschus, J.Qin, E.D.Korn, and H.Brzeska (1998).
Effect of mutating the regulatory phosphoserine and conserved threonine on the activity of the expressed catalytic domain of Acanthamoeba myosin I heavy chain kinase.
  Proc Natl Acad Sci U S A, 95, 4146-4151.  
10089519 N.Narayana, P.Akamine, N.H.Xuong, and S.S.Taylor (1998).
Crystallization and preliminary X-ray analysis of the unliganded recombinant catalytic subunit of cAMP-dependent protein kinase.
  Acta Crystallogr D Biol Crystallogr, 54, 1401-1404.  
  9528799 P.R.Romano, M.T.Garcia-Barrio, X.Zhang, Q.Wang, D.R.Taylor, F.Zhang, C.Herring, M.B.Mathews, J.Qin, and A.G.Hinnebusch (1998).
Autophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2alpha kinases PKR and GCN2.
  Mol Cell Biol, 18, 2282-2297.  
9730835 P.Saylor, C.Wang, T.J.Hirai, and J.A.Adams (1998).
A second magnesium ion is critical for ATP binding in the kinase domain of the oncoprotein v-Fps.
  Biochemistry, 37, 12624-12630.  
9435218 S.Shaltiel, S.Cox, and S.S.Taylor (1998).
Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A.
  Proc Natl Acad Sci U S A, 95, 484-491.  
9362479 E.D.Lowe, M.E.Noble, V.T.Skamnaki, N.G.Oikonomakos, D.J.Owen, and L.N.Johnson (1997).
The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition.
  EMBO J, 16, 6646-6658.
PDB code: 2phk
9184152 J.Lew, S.S.Taylor, and J.A.Adams (1997).
Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy.
  Biochemistry, 36, 6717-6724.  
9062128 J.Zhou, and J.A.Adams (1997).
Is there a catalytic base in the active site of cAMP-dependent protein kinase?
  Biochemistry, 36, 2977-2984.  
9312016 S.R.Hubbard (1997).
Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog.
  EMBO J, 16, 5572-5581.
PDB code: 1ir3
  8819164 B.D.Grant, I.Tsigelny, J.A.Adams, and S.S.Taylor (1996).
Examination of an active-site electrostatic node in the cAMP-dependent protein kinase catalytic subunit.
  Protein Sci, 5, 1316-1324.  
8639687 B.D.Grant, and J.A.Adams (1996).
Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques.
  Biochemistry, 35, 2022-2029.  
8718888 J.A.Adams (1996).
Insight into tyrosine phosphorylation in v-Fps using proton inventory techniques.
  Biochemistry, 35, 10949-10956.  
  8786241 J.M.Sowadski, C.A.Ellis, and Madhusudan (1996).
Detergent binding to unmyristylated protein kinase A--structural implications for the role of myristate.
  J Bioenerg Biomembr, 28, 7.  
  8657148 M.P.Wymann, G.Bulgarelli-Leva, M.J.Zvelebil, L.Pirola, B.Vanhaesebroeck, M.D.Waterfield, and G.Panayotou (1996).
Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction.
  Mol Cell Biol, 16, 1722-1733.  
7809124 M.Vihinen, D.Vetrie, H.S.Maniar, H.D.Ochs, Q.Zhu, I.Vorechovský, A.D.Webster, L.D.Notarangelo, L.Nilsson, and J.M.Sowadski (1994).
Structural basis for chromosome X-linked agammaglobulinemia: a tyrosine kinase disease.
  Proc Natl Acad Sci U S A, 91, 12803-12807.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.