spacer
spacer

PDBsum entry 1jap

Go to PDB code: 
protein ligands metals links
Complex (metalloprotease/inhibitor) PDB id
1jap
Jmol
Contents
Protein chain
157 a.a. *
Ligands
PRO-LEU-GLY-HOA
Metals
_ZN ×2
_CA ×2
Waters ×148
* Residue conservation analysis
PDB id:
1jap
Name: Complex (metalloprotease/inhibitor)
Title: Complex of pro-leu-gly-hydroxylamine with the catalytic domain of matrix metallo proteinase-8 (met80 form)
Structure: Matrix metallo proteinase-8 (met80 form). Chain: a. Fragment: catalytic domain, residues 86 - 242. Synonym: mmp-8-phe79 form. Engineered: yes. Other_details: mmp-8 is identical to the human neutrophil collagenase. Pro-leu-gly-hydroxylamine. Chain: i.
Source: Homo sapiens. Human. Organism_taxid: 9606. Cell: neutrophils. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
1.82Å     R-factor:   0.194    
Authors: W.Bode,P.Reinemer,R.Huber,T.Kleine,S.Schnierer,H.Tschesche
Key ref: W.Bode et al. (1994). The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J, 13, 1263-1269. PubMed id: 8137810
Date:
11-Mar-96     Release date:   11-Jul-96    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P22894  (MMP8_HUMAN) -  Neutrophil collagenase
Seq:
Struc:
467 a.a.
157 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.4.24.34  - Neutrophil collagenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Cleavage of interstitial collagens in the triple helical domain. Unlike EC 3.4.24.7, this enzyme cleaves type III collagen more slowly than type I.
      Cofactor: Ca(2+); Zn(2+)
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular matrix   1 term 
  Biological process     proteolysis   1 term 
  Biochemical function     metallopeptidase activity     3 terms  

 

 
EMBO J 13:1263-1269 (1994)
PubMed id: 8137810  
 
 
The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity.
W.Bode, P.Reinemer, R.Huber, T.Kleine, S.Schnierer, H.Tschesche.
 
  ABSTRACT  
 
Matrix metalloproteinases are a family of zinc endopeptidases involved in tissue remodelling. They have been implicated in various disease processes including tumour invasion and joint destruction. These enzymes consist of several domains, which are responsible for latency, catalysis and substrate recognition. Human neutrophil collagenase (PMNL-CL, MMP-8) represents one of the two 'interstitial' collagenases that cleave triple helical collagens types I, II and III. Its 163 residue catalytic domain (Met80 to Gly242) has been expressed in Escherichia coli and crystallized as a non-covalent complex with the inhibitor Pro-Leu-Gly-hydroxylamine. The 2.0 A crystal structure reveals a spherical molecule with a shallow active-site cleft separating a smaller C-terminal subdomain from a bigger N-terminal domain, composed of a five-stranded beta-sheet, two alpha-helices, and bridging loops. The inhibitor mimics the unprimed (P1-P3) residues of a substrate; primed (P1'-P3') peptide substrate residues should bind in an extended conformation, with the bulky P1' side-chain fitting into the deep hydrophobic S1' subsite. Modelling experiments with collagen show that the scissile strand of triple-helical collagen must be freed to fit the subsites. The catalytic zinc ion is situated at the bottom of the active-site cleft and is penta-coordinated by three histidines and by both hydroxamic acid oxygens of the inhibitor. In addition to the catalytic zinc, the catalytic domain harbours a second, non-exchangeable zinc ion and two calcium ions, which are packed against the top of the beta-sheet and presumably function to stabilize the catalytic domain.(ABSTRACT TRUNCATED AT 250 WORDS)
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21333669 A.Pinyachat, P.Rojnuckarin, C.Muanpasitporn, P.Singhamatr, and S.Nuchprayoon (2011).
Albocollagenase, a novel recombinant P-III snake venom metalloproteinase from green pit viper (Cryptelytrops albolabris), digests collagen and inhibits platelet aggregation.
  Toxicon, 57, 772-780.  
19201757 F.X.Gomis-Rüth (2009).
Catalytic domain architecture of metzincin metalloproteases.
  J Biol Chem, 284, 15353-15357.  
19282283 I.Bertini, M.Fragai, C.Luchinat, M.Melikian, E.Mylonas, N.Sarti, and D.I.Svergun (2009).
Interdomain Flexibility in Full-length Matrix Metalloproteinase-1 (MMP-1).
  J Biol Chem, 284, 12821-12828.  
19047683 M.D.Gardner, C.K.Chion, R.de Groot, A.Shah, J.T.Crawley, and D.A.Lane (2009).
A functional calcium-binding site in the metalloprotease domain of ADAMTS13.
  Blood, 113, 1149-1157.  
19962668 M.Garofalo, G.Di Leva, G.Romano, G.Nuovo, S.S.Suh, A.Ngankeu, C.Taccioli, F.Pichiorri, H.Alder, P.Secchiero, P.Gasparini, A.Gonelli, S.Costinean, M.Acunzo, G.Condorelli, and C.M.Croce (2009).
miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation.
  Cancer Cell, 16, 498-509.  
18596065 D.Xu, N.Suenaga, M.J.Edelmann, R.Fridman, R.J.Muschel, and B.M.Kessler (2008).
Novel MMP-9 substrates in cancer cells revealed by a label-free quantitative proteomics approach.
  Mol Cell Proteomics, 7, 2215-2228.  
18186480 N.Díaz, and D.Suárez (2008).
Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate.
  Proteins, 72, 50-61.  
  17354089 A.R.Hannas, J.C.Pereira, J.M.Granjeiro, and L.Tjäderhane (2007).
The role of matrix metalloproteinases in the oral environment.
  Acta Odontol Scand, 65, 1.  
17206645 A.Ravi, P.Garg, and S.V.Sitaraman (2007).
Matrix metalloproteinases in inflammatory bowel disease: boon or a bane?
  Inflamm Bowel Dis, 13, 97.  
17163561 F.E.Jacobsen, J.A.Lewis, and S.M.Cohen (2007).
The Design of Inhibitors for Medicinally Relevant Metalloproteins.
  ChemMedChem, 2, 152-171.  
17477392 J.V.Edwards, and P.S.Howley (2007).
Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings.
  J Biomed Mater Res A, 83, 446-454.  
16622849 M.N.VanSaun, and L.M.Matrisian (2006).
Matrix metalloproteinases and cellular motility in development and disease.
  Birth Defects Res C Embryo Today, 78, 69-79.  
17050733 Y.Itoh, N.Ito, H.Nagase, R.D.Evans, S.A.Bird, and M.Seiki (2006).
Cell surface collagenolysis requires homodimerization of the membrane-bound collagenase MT1-MMP.
  Mol Biol Cell, 17, 5390-5399.  
14709555 P.L.Tsai, C.H.Chen, C.J.Huang, C.M.Chou, and G.D.Chang (2004).
Purification and cloning of an endogenous protein inhibitor of carp nephrosin, an astacin metalloproteinase.
  J Biol Chem, 279, 11146-11155.  
15390257 S.Elezkurtaj, C.Kopitz, A.H.Baker, A.Perez-Cantó, M.J.Arlt, R.Khokha, B.Gansbacher, M.Anton, K.Brand, and A.Krüger (2004).
Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinases-1 in the liver: efficient protection against T-cell lymphoma and colon carcinoma metastasis.
  J Gene Med, 6, 1228-1237.  
12595739 A.L.Gall, M.Ruff, and D.Moras (2003).
The dual role of CHAPS in the crystallization of stromelysin-3 catalytic domain.
  Acta Crystallogr D Biol Crystallogr, 59, 603-606.  
12591933 E.I.Chen, W.Li, A.Godzik, E.W.Howard, and J.W.Smith (2003).
A residue in the S2 subsite controls substrate selectivity of matrix metalloproteinase-2 and matrix metalloproteinase-9.
  J Biol Chem, 278, 17158-17163.  
14532275 H.I.Park, Y.Jin, D.R.Hurst, C.A.Monroe, S.Lee, M.A.Schwartz, and Q.X.Sang (2003).
The intermediate S1' pocket of the endometase/matrilysin-2 active site revealed by enzyme inhibition kinetic studies, protein sequence analyses, and homology modeling.
  J Biol Chem, 278, 51646-51653.  
12837794 S.Ravaud, P.Gouet, R.Haser, and N.Aghajari (2003).
Probing the role of divalent metal ions in a bacterial psychrophilic metalloprotease: binding studies of an enzyme in the crystalline state by x-ray crystallography.
  J Bacteriol, 185, 4195-4203.
PDB codes: 1o0q 1o0t 1om6 1om7 1om8 1omj
12656997 V.J.Uitto, C.M.Overall, and C.McCulloch (2003).
Proteolytic host cell enzymes in gingival crevice fluid.
  Periodontol 2000, 31, 77.  
12887053 W.Bode, and K.Maskos (2003).
Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases.
  Biol Chem, 384, 863-872.  
11694539 E.I.Chen, S.J.Kridel, E.W.Howard, W.Li, A.Godzik, and J.W.Smith (2002).
A unique substrate recognition profile for matrix metalloproteinase-2.
  J Biol Chem, 277, 4485-4491.  
12228918 J.L.Lauer-Fields, D.Juska, and G.B.Fields (2002).
Matrix metalloproteinases and collagen catabolism.
  Biopolymers, 66, 19-32.  
12437092 J.L.Lauer-Fields, and G.B.Fields (2002).
Triple-helical peptide analysis of collagenolytic protease activity.
  Biol Chem, 383, 1095-1105.  
12071970 K.F.Huang, S.H.Chiou, T.P.Ko, and A.H.Wang (2002).
Determinants of the inhibition of a Taiwan habu venom metalloproteinase by its endogenous inhibitors revealed by X-ray crystallography and synthetic inhibitor analogues.
  Eur J Biochem, 269, 3047-3056.
PDB codes: 1kug 1kui 1kuk
11939773 K.Kaur, K.Zhu, M.S.Whittemore, R.L.Petersen, A.Lichte, H.Tschesche, and T.Pourmotabbed (2002).
Identification of the active site of gelatinase B as the structural element sufficient for converting a protein to a metalloprotease.
  Biochemistry, 41, 4789-4797.  
  12167581 M.Bloomston, E.E.Zervos, and A.S.Rosemurgy (2002).
Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials.
  Ann Surg Oncol, 9, 668-674.  
11733020 A.Bódi, G.Kaslik, I.Venekei, and L.Gráf (2001).
Structural determinants of the half-life and cleavage site preference in the autolytic inactivation of chymotrypsin.
  Eur J Biochem, 268, 6238-6246.  
11592410 F.Grams, H.Brandstetter, S.D'Alò, D.Geppert, H.W.Krell, H.Leinert, V.Livi, E.Menta, A.Oliva, G.Zimmermann, F.Gram, H.Brandstetter, S.D'Alò, D.Geppert, H.W.Krell, H.Leinert, E.Livi VMenta, A.Oliva, and G.Zimmermann (2001).
Pyrimidine-2,4,6-Triones: a new effective and selective class of matrix metalloproteinase inhibitors.
  Biol Chem, 382, 1277-1285.  
11605653 T.Fujisawa, S.Katakura, S.Odake, Y.Morita, J.Yasuda, I.Yasumatsu, and T.Morikawa (2001).
Design and synthesis of carboxylate inhibitors for matrix metalloproteinases.
  Chem Pharm Bull (Tokyo), 49, 1272-1279.  
11223512 T.Hori, T.Kumasaka, M.Yamamoto, N.Nonaka, N.Tanaka, Y.Hashimoto, U.Ueki, and K.Takio (2001).
Structure of a new 'aspzincin' metalloendopeptidase from Grifola frondosa: implications for the catalytic mechanism and substrate specificity based on several different crystal forms.
  Acta Crystallogr D Biol Crystallogr, 57, 361-368.
PDB codes: 1g12 1ge5 1ge6 1ge7
11248710 V.Knäuper, M.L.Patterson, F.X.Gomis-Rüth, B.Smith, A.Lyons, A.J.Docherty, and G.Murphy (2001).
The role of exon 5 in fibroblast collagenase (MMP-1) substrate specificity and inhibitor selectivity.
  Eur J Biochem, 268, 1888-1896.  
11023917 G.F.Fasciglione, S.Marini, S.D'Alessio, V.Politi, and M.Coletta (2000).
pH- and temperature-dependence of functional modulation in metalloproteinases. A comparison between neutrophil collagenase and gelatinases A and B.
  Biophys J, 79, 2138-2149.  
10788434 J.L.Lauer-Fields, K.A.Tuzinski, K.Shimokawa, H.Nagase, and G.B.Fields (2000).
Hydrolysis of triple-helical collagen peptide models by matrix metalloproteinases.
  J Biol Chem, 275, 13282-13290.  
10662694 J.Ottl, D.Gabriel, G.Murphy, V.Knäuper, Y.Tominaga, H.Nagase, M.Kröger, H.Tschesche, W.Bode, and L.Moroder (2000).
Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases.
  Chem Biol, 7, 119-132.  
10753905 L.L.Johnson, A.G.Pavlovsky, A.R.Johnson, J.A.Janowicz, C.F.Man, D.F.Ortwine, C.F.Purchase, A.D.White, and D.J.Hupe (2000).
A rationalization of the acidic pH dependence for stromelysin-1 (Matrix metalloproteinase-3) catalysis and inhibition.
  J Biol Chem, 275, 11026-11033.  
10188875 A.H.Baker, S.J.George, A.B.Zaltsman, G.Murphy, and A.C.Newby (1999).
Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3.
  Br J Cancer, 79, 1347-1355.  
9888808 C.M.Holman, C.C.Kan, M.R.Gehring, and H.E.Van Wart (1999).
Role of His-224 in the anomalous pH dependence of human stromelysin-1.
  Biochemistry, 38, 677-681.  
  10217773 C.M.Jung, O.Matsushita, S.Katayama, J.Minami, J.Sakurai, and A.Okabe (1999).
Identification of metal ligands in the Clostridium histolyticum ColH collagenase.
  J Bacteriol, 181, 2816-2822.  
10026247 D.E.Brodersen, J.Nyborg, and M.Kjeldgaard (1999).
Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states.
  Biochemistry, 38, 1695-1704.
PDB codes: 2psr 3psr
10353819 F.J.Moy, P.K.Chanda, J.M.Chen, S.Cosmi, W.Edris, J.S.Skotnicki, J.Wilhelm, and R.Powers (1999).
NMR solution structure of the catalytic fragment of human fibroblast collagenase complexed with a sulfonamide derivative of a hydroxamic acid compound.
  Biochemistry, 38, 7085-7096.
PDB codes: 3ayk 4ayk
10455161 L.L.Johnson, D.A.Bornemeier, J.A.Janowicz, J.Chen, A.G.Pavlovsky, and D.F.Ortwine (1999).
Effect of species differences on stromelysin-1 (MMP-3) inhibitor potency. An explanation of inhibitor selectivity using homology modeling and chimeric proteins.
  J Biol Chem, 274, 24881-24887.  
10353844 M.Farr, M.Pieper, J.Calvete, and H.Tschesche (1999).
The N-terminus of collagenase MMP-8 determines superactivity and inhibition: a relation of structure and function analyzed by biomolecular interaction analysis.
  Biochemistry, 38, 7332-7338.  
10194346 T.Meinnel, L.Patiny, S.Ragusa, and S.Blanquet (1999).
Design and synthesis of substrate analogue inhibitors of peptide deformylase.
  Biochemistry, 38, 4287-4295.  
10415721 W.Bode, C.Fernandez-Catalan, F.Grams, F.X.Gomis-Rüth, H.Nagase, H.Tschesche, and K.Maskos (1999).
Insights into MMP-TIMP interactions.
  Ann N Y Acad Sci, 878, 73-91.  
10531480 X.Zhu, M.Teng, and L.Niu (1999).
Structure of acutolysin-C, a haemorrhagic toxin from the venom of Agkistrodon acutus, providing further evidence for the mechanism of the pH-dependent proteolytic reaction of zinc metalloproteinases.
  Acta Crystallogr D Biol Crystallogr, 55, 1834-1841.
PDB code: 1qua
9446583 A.Mucha, P.Cuniasse, R.Kannan, F.Beau, A.Yiotakis, P.Basset, and V.Dive (1998).
Membrane type-1 matrix metalloprotease and stromelysin-3 cleave more efficiently synthetic substrates containing unusual amino acids in their P1' positions.
  J Biol Chem, 273, 2763-2768.  
  9792098 B.C.Finzel, E.T.Baldwin, G.L.Bryant, G.F.Hess, J.W.Wilks, C.M.Trepod, J.E.Mott, V.P.Marshall, G.L.Petzold, R.A.Poorman, T.J.O'Sullivan, H.J.Schostarez, and M.A.Mitchell (1998).
Structural characterizations of nonpeptidic thiadiazole inhibitors of matrix metalloproteinases reveal the basis for stromelysin selectivity.
  Protein Sci, 7, 2118-2126.
PDB codes: 1usn 2usn
9417124 B.P.Mari, I.C.Anderson, S.E.Mari, Y.Ning, Y.Lutz, L.Kobzik, and M.A.Shipp (1998).
Stromelysin-3 is induced in tumor/stroma cocultures and inactivated via a tumor-specific and basic fibroblast growth factor-dependent mechanism.
  J Biol Chem, 273, 618-626.  
9822215 C.Benaud, R.B.Dickson, and E.W.Thompson (1998).
Roles of the matrix metalloproteinases in mammary gland development and cancer.
  Breast Cancer Res Treat, 50, 97.  
9724659 C.Fernandez-Catalan, W.Bode, R.Huber, D.Turk, J.J.Calvete, A.Lichte, H.Tschesche, and K.Maskos (1998).
Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor.
  EMBO J, 17, 5238-5248.
PDB codes: 1bqq 1buv
9739094 E.Schlagenhauf, R.Etges, and P.Metcalf (1998).
The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63).
  Structure, 6, 1035-1046.
PDB code: 1lml
9484219 F.J.Moy, P.K.Chanda, S.Cosmi, M.R.Pisano, C.Urbano, J.Wilhelm, and R.Powers (1998).
High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR.
  Biochemistry, 37, 1495-1504.
PDB codes: 1ayk 2ayk
  9521103 F.X.Gomis-Rüth, E.F.Meyer, L.F.Kress, and V.Politi (1998).
Structures of adamalysin II with peptidic inhibitors. Implications for the design of tumor necrosis factor alpha convertase inhibitors.
  Protein Sci, 7, 283-292.
PDB codes: 2aig 3aig
9771478 G.I.Murray, M.E.Duncan, P.O'Neil, J.A.McKay, W.T.Melvin, and J.E.Fothergill (1998).
Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer.
  J Pathol, 185, 256-261.  
  9655333 H.Brandstetter, R.A.Engh, E.G.Von Roedern, L.Moroder, R.Huber, W.Bode, and F.Grams (1998).
Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data.
  Protein Sci, 7, 1303-1309.
PDB codes: 1a85 1a86
  10082367 I.L.Alberts, K.Nadassy, and S.J.Wodak (1998).
Analysis of zinc binding sites in protein crystal structures.
  Protein Sci, 7, 1700-1716.  
9651395 M.Yang, and M.Kurkinen (1998).
Cloning and characterization of a novel matrix metalloproteinase (MMP), CMMP, from chicken embryo fibroblasts. CMMP, Xenopus XMMP, and human MMP19 have a conserved unique cysteine in the catalytic domain.
  J Biol Chem, 273, 17893-17900.  
9331419 E.G.Huizinga, R.Martijn van der Plas, J.Kroon, J.J.Sixma, and P.Gros (1997).
Crystal structure of the A3 domain of human von Willebrand factor: implications for collagen binding.
  Structure, 5, 1147-1156.
PDB code: 1atz
9179398 E.J.Lewis, J.Bishop, K.M.Bottomley, D.Bradshaw, M.Brewster, M.J.Broadhurst, P.A.Brown, J.M.Budd, L.Elliott, A.K.Greenham, W.H.Johnson, J.S.Nixon, F.Rose, B.Sutton, and K.Wilson (1997).
Ro 32-3555, an orally active collagenase inhibitor, prevents cartilage breakdown in vitro and in vivo.
  Br J Pharmacol, 121, 540-546.  
9346968 G.D.Johnson, and J.S.Bond (1997).
Activation mechanism of meprins, members of the astacin metalloendopeptidase family.
  J Biol Chem, 272, 28126-28132.  
9154920 J.J.Perona, C.A.Tsu, C.S.Craik, and R.J.Fletterick (1997).
Crystal structure of an ecotin-collagenase complex suggests a model for recognition and cleavage of the collagen triple helix.
  Biochemistry, 36, 5381-5392.
PDB code: 1azz
9325284 K.C.Fang, W.W.Raymond, J.L.Blount, and G.H.Caughey (1997).
Dog mast cell alpha-chymase activates progelatinase B by cleaving the Phe88-Gln89 and Phe91-Glu92 bonds of the catalytic domain.
  J Biol Chem, 272, 25628-25635.  
9249047 M.Betz, P.Huxley, S.J.Davies, Y.Mushtaq, M.Pieper, H.Tschesche, W.Bode, and F.X.Gomis-Rüth (1997).
1.8-A crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile.
  Eur J Biochem, 247, 356-363.
PDB code: 1kbc
9261109 T.Sorsa, T.Salo, E.Koivunen, J.Tyynelä, Y.T.Konttinen, U.Bergmann, A.Tuuttila, E.Niemi, O.Teronen, P.Heikkilä, H.Tschesche, J.Leinonen, S.Osman, and U.H.Stenman (1997).
Activation of type IV procollagenases by human tumor-associated trypsin-2.
  J Biol Chem, 272, 21067-21074.  
8999811 Y.Zhang, W.L.Dean, and R.D.Gray (1997).
Cooperative binding of Ca2+ to human interstitial collagenase assessed by circular dichroism, fluorescence, and catalytic activity.
  J Biol Chem, 272, 1444-1447.  
8756473 A.R.Welch, C.M.Holman, M.Huber, M.C.Brenner, M.F.Browner, and H.E.Van Wart (1996).
Understanding the P1' specificity of the matrix metalloproteinases: effect of S1' pocket mutations in matrilysin and stromelysin-1.
  Biochemistry, 35, 10103-10109.  
8647077 B.Chevrier, H.D'Orchymont, C.Schalk, C.Tarnus, and D.Moras (1996).
The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Involvement in catalysis of Glu151 and two zinc ions of the co-catalytic unit.
  Eur J Biochem, 237, 393-398.
PDB code: 1igb
  8970152 B.Podbilewicz (1996).
ADM-1, a protein with metalloprotease- and disintegrin-like domains, is expressed in syncytial organs, sperm, and sheath cells of sensory organs in Caenorhabditis elegans.
  Mol Biol Cell, 7, 1877-1893.  
8662913 C.H.Bu, and T.Pourmotabbed (1996).
Mechanism of Ca2+-dependent activity of human neutrophil gelatinase B.
  J Biol Chem, 271, 14308-14315.  
8639603 D.R.Wetmore, and K.D.Hardman (1996).
Roles of the propeptide and metal ions in the folding and stability of the catalytic domain of stromelysin (matrix metalloproteinase 3).
  Biochemistry, 35, 6549-6558.  
8610113 I.Botos, L.Scapozza, D.Zhang, L.A.Liotta, and E.F.Meyer (1996).
Batimastat, a potent matrix mealloproteinase inhibitor, exhibits an unexpected mode of binding.
  Proc Natl Acad Sci U S A, 93, 2749-2754.
PDB code: 1dth
8961947 J.Cha, M.V.Pedersen, and D.S.Auld (1996).
Metal and pH dependence of heptapeptide catalysis by human matrilysin.
  Biochemistry, 35, 15831-15838.  
8662603 L.Bányai, H.Tordai, and L.Patthty (1996).
Structure and domain-domain interactions of the gelatin binding site of human 72-kilodalton type IV collagenase (gelatinase A, matrix metalloproteinase 2).
  J Biol Chem, 271, 12003-12008.  
8924199 Q.A.Sang, and D.A.Douglas (1996).
Computational sequence analysis of matrix metalloproteinases.
  J Protein Chem, 15, 137-160.  
8917445 R.A.Williamson, D.Natalia, C.K.Gee, G.Murphy, M.D.Carr, and R.B.Freedman (1996).
Chemically and conformationally authentic active domain of human tissue inhibitor of metalloproteinases-2 refolded from bacterial inclusion bodies.
  Eur J Biochem, 241, 476-483.  
8654408 S.Morante, L.Furenlid, G.Schiavo, F.Tonello, R.Zwilling, and C.Montecucco (1996).
X-ray absorption spectroscopy study of zinc coordination in tetanus neurotoxin, astacin, alkaline protease and thermolysin.
  Eur J Biochem, 235, 606-612.  
8888065 T.E.Cawston (1996).
Metalloproteinase inhibitors and the prevention of connective tissue breakdown.
  Pharmacol Ther, 70, 163-182.  
8740360 V.Dhanaraj, Q.Z.Ye, L.L.Johnson, D.J.Hupe, D.F.Ortwine, J.B.Dunbar, J.R.Rubin, A.Pavlovsky, C.Humblet, and T.L.Blundell (1996).
X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily.
  Structure, 4, 375-386.  
8576151 V.Knäuper, C.López-Otin, B.Smith, G.Knight, and G.Murphy (1996).
Biochemical characterization of human collagenase-3.
  J Biol Chem, 271, 1544-1550.  
8631328 V.Knäuper, G.Murphy, and H.Tschesche (1996).
Activation of human neutrophil procollagenase by stromelysin 2.
  Eur J Biochem, 235, 187-191.  
  9164646 W.D.Shingleton, D.J.Hodges, P.Brick, and T.E.Cawston (1996).
Collagenase: a key enzyme in collagen turnover.
  Biochem Cell Biol, 74, 759-775.  
8626483 Y.Zhang, and R.D.Gray (1996).
Characterization of folded, intermediate, and unfolded states of recombinant human interstitial collagenase.
  J Biol Chem, 271, 8015-8021.  
7559421 A.Noël, M.Santavicca, I.Stoll, C.L'Hoir, A.Staub, G.Murphy, M.C.Rio, and P.Basset (1995).
Identification of structural determinants controlling human and mouse stromelysin-3 proteolytic activities.
  J Biol Chem, 270, 22866-22872.  
7629187 C.H.Bu, and T.Pourmotabbed (1995).
Mechanism of activation of human neutrophil gelatinase B. Discriminating between the role of Ca2+ in activation and catalysis.
  J Biol Chem, 270, 18563-18569.  
8771234 C.Montecucco, and G.Schiavo (1995).
Structure and function of tetanus and botulinum neurotoxins.
  Q Rev Biophys, 28, 423-472.  
8561847 D.Soler, T.Nomizu, W.E.Brown, Y.Shibata, and D.S.Auld (1995).
Matrilysin: expression, purification, and characterization.
  J Protein Chem, 14, 511-520.  
7737183 F.Grams, P.Reinemer, J.C.Powers, T.Kleine, M.Pieper, H.Tschesche, R.Huber, and W.Bode (1995).
X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design.
  Eur J Biochem, 228, 830-841.
PDB codes: 1jao 1jaq
7737992 G.Schiavo, C.C.Shone, M.K.Bennett, R.H.Scheller, and C.Montecucco (1995).
Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins.
  J Biol Chem, 270, 10566-10570.  
7540055 G.Siligardi, and A.F.Drake (1995).
The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides.
  Biopolymers, 37, 281-292.  
7649159 H.Will, and B.Hinzmann (1995).
cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment.
  Eur J Biochem, 231, 602-608.  
  8535233 J.W.Becker, A.I.Marcy, L.L.Rokosz, M.G.Axel, J.J.Burbaum, P.M.Fitzgerald, P.M.Cameron, C.K.Esser, W.K.Hagmann, and J.D.Hermes (1995).
Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme.
  Protein Sci, 4, 1966-1976.
PDB codes: 1slm 1sln
8527834 R.C.Jackson (1995).
Update on computer-aided drug design.
  Curr Opin Biotechnol, 6, 646-651.  
  8580839 S.R.Van Doren, A.V.Kurochkin, W.Hu, Q.Z.Ye, L.L.Johnson, D.J.Hupe, and E.R.Zuiderweg (1995).
Solution structure of the catalytic domain of human stromelysin complexed with a hydrophobic inhibitor.
  Protein Sci, 4, 2487-2498.
PDB codes: 1ums 1umt
8561849 T.Pourmotabbed, J.A.Aelion, D.Tyrrell, K.A.Hasty, C.H.Bu, and C.L.Mainardi (1995).
Role of the conserved histidine and aspartic acid residues in activity and stabilization of human gelatinase B: an example of matrix metalloproteinases.
  J Protein Chem, 14, 527-535.  
  7663339 W.Stöcker, F.Grams, U.Baumann, P.Reinemer, F.X.Gomis-Rüth, D.B.McKay, and W.Bode (1995).
The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases.
  Protein Sci, 4, 823-840.  
7583637 W.Stöcker, and W.Bode (1995).
Structural features of a superfamily of zinc-endopeptidases: the metzincins.
  Curr Opin Struct Biol, 5, 383-390.  
8078901 D.Zhang, I.Botos, F.X.Gomis-Rüth, R.Doll, C.Blood, F.G.Njoroge, J.W.Fox, W.Bode, and E.F.Meyer (1994).
Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d).
  Proc Natl Acad Sci U S A, 91, 8447-8451.
PDB codes: 1atl 1htd
7978819 H.Tschesche, J.Bläser, T.Kleine, S.Schnierer, P.Reinemer, W.Bode, U.Maasjoshusmann, and C.Fricke (1994).
Inhibition of matrix metalloproteinases in rheumatoid arthritis and the crystallographic binding mode of a peptide inhibitor.
  Ann N Y Acad Sci, 732, 400-402.  
7712290 P.M.Colman (1994).
Structure-based drug design.
  Curr Opin Struct Biol, 4, 868-874.  
7851740 S.K.Kochi, G.Schiavo, M.Mock, and C.Montecucco (1994).
Zinc content of the Bacillus anthracis lethal factor.
  FEMS Microbiol Lett, 124, 343-348.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.