spacer
spacer

PDBsum entry 1izc

Go to PDB code: 
protein ligands metals links
Lyase PDB id
1izc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
299 a.a. *
Ligands
PYR
Metals
_MG
Waters ×360
* Residue conservation analysis
PDB id:
1izc
Name: Lyase
Title: Crystal structure analysis of macrophomate synthase
Structure: Macrophomate synthase intermolecular diels-alderase. Chain: a. Synonym: macrophomate synthase. Engineered: yes. Mutation: yes
Source: Macrophoma commelinae. Organism_taxid: 108330. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Hexamer (from PDB file)
Resolution:
1.70Å     R-factor:   0.176     R-free:   0.203
Authors: T.Ose,K.Watanabe,T.Mie,M.Honma,H.Watanabe,M.Yao,H.Oikawa,I.Tanaka
Key ref:
T.Ose et al. (2003). Insight into a natural Diels-Alder reaction from the structure of macrophomate synthase. Nature, 422, 185-189. PubMed id: 12634789 DOI: 10.1038/nature01454
Date:
01-Oct-02     Release date:   01-Apr-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Q9UVD4  (Q9UVD4_9PEZI) -  Macrophomate synthase from Macrophoma commelinae
Seq:
Struc:
339 a.a.
299 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1038/nature01454 Nature 422:185-189 (2003)
PubMed id: 12634789  
 
 
Insight into a natural Diels-Alder reaction from the structure of macrophomate synthase.
T.Ose, K.Watanabe, T.Mie, M.Honma, H.Watanabe, M.Yao, H.Oikawa, I.Tanaka.
 
  ABSTRACT  
 
The Diels-Alder reaction, which forms a six-membered ring from an alkene (dienophile) and a 1,3-diene, is synthetically very useful for construction of cyclic products with high regio- and stereoselectivity under mild conditions. It has been applied to the synthesis of complex pharmaceutical and biologically active compounds. Although evidence on natural Diels-Alderases has been accumulated in the biosynthesis of secondary metabolites, there has been no report on the structural details of the natural Diels-Alderases. The function and catalytic mechanism of the natural Diels-Alderase are of great interest owing to the diversity of molecular skeletons in natural Diels-Alder adducts. Here we present the 1.70 A resolution crystal structure of the natural Diels-Alderase, fungal macrophomate synthase (MPS), in complex with pyruvate. The active site of the enzyme is large and hydrophobic, contributing amino acid residues that can hydrogen-bond to the substrate 2-pyrone. These data provide information on the catalytic mechanism of MPS, and suggest that the reaction proceeds via a large-scale structural reorganization of the product.
 
  Selected figure(s)  
 
Figure 1.
Figure 1: Details of individual reaction steps with macrophomate synthase. Step 1 is decarboxylation of oxalacetate. Step 2 are Diels -Alder reactions of the enolate and 2-pyrones 2 and 4 to form higher energy adducts 3 and 5, respectively. Step 3 is degradation of 3 in which abstraction of hydrogen triggers C -O bond cleavage followed by decarboxylation and elimination of hydroxy group. The steric energies (SE) of each compound were determined by molecular mechanics calculations using the MM2 force field.
Figure 4.
Figure 4: Comparison of Diels -Alderases. a, Solanapyrone synthase (SPS) catalyses oxidation of alcohol 7 to the reactive formyl derivative which readily promotes [4 + 2] cycloaddition to give solanapyrone A 8. b, Lovastatin nonaketide synthase (LNKS) catalyses intramolecular [4 + 2] cycloaddition from 9 to 10. LNKS also catalyses condensation of acetyl CoA and malonyl CoA to form an enzyme bound analogue of 9. SNAC is N-acetylcysteamine thioester. c, Diels -Alderase antibody 1E9 transforms thiophene dioxide 11 and maleimide 12 to intermediate 13 via [4 + 2] cycloaddition, which is then converted into aromatic product 14 with elimination of sulphur dioxide and the subsequent oxidation. Non-catalysed degradation from 13 to 14 allows this catalytic antibody to escape the product inhibition. This leads 1E9 to be the most efficient Diels -Alderase antibody.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2003, 422, 185-189) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20820460 A.Sakakura, and K.Ishihara (2011).
Asymmetric Cu(II) catalyses for cycloaddition reactions based on π-cation or n-cation interactions.
  Chem Soc Rev, 40, 163-172.  
21544146 H.J.Kim, M.W.Ruszczycky, S.H.Choi, Y.N.Liu, and H.W.Liu (2011).
Enzyme-catalysed [4+2] cycloaddition is a key step in the biosynthesis of spinosyn A.
  Nature, 473, 109-112.  
20574696 M.Linder, A.Hermansson, J.Liebeschuetz, and T.Brinck (2011).
Computational design of a lipase for catalysis of the Diels-Alder reaction.
  J Mol Model, 17, 833-849.  
20647463 J.B.Siegel, A.Zanghellini, H.M.Lovick, G.Kiss, A.R.Lambert, J.L.St Clair, J.L.Gallaher, D.Hilvert, M.H.Gelb, B.L.Stoddard, K.N.Houk, F.E.Michael, and D.Baker (2010).
Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction.
  Science, 329, 309-313.
PDB code: 3i1c
20486243 K.Kasahara, T.Miyamoto, T.Fujimoto, H.Oguri, T.Tokiwano, H.Oikawa, Y.Ebizuka, and I.Fujii (2010).
Solanapyrone synthase, a possible Diels-Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani.
  Chembiochem, 11, 1245-1252.  
19728702 O.Acevedo, and W.L.Jorgensen (2010).
Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions.
  Acc Chem Res, 43, 142-151.  
20142038 S.A.Borisova, B.T.Circello, J.K.Zhang, W.A.van der Donk, and W.W.Metcalf (2010).
Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633.
  Chem Biol, 17, 28-37.  
19300814 M.Linder, and T.Brinck (2009).
Synergistic activation of the Diels-Alder reaction by an organic catalyst and substituents: a computational study.
  Org Biomol Chem, 7, 1304-1311.  
18754693 J.F.Rakus, A.A.Fedorov, E.V.Fedorov, M.E.Glasner, B.K.Hubbard, J.D.Delli, P.C.Babbitt, S.C.Almo, and J.A.Gerlt (2008).
Evolution of enzymatic activities in the enolase superfamily: L-rhamnonate dehydratase.
  Biochemistry, 47, 9944-9954.
PDB codes: 2i5q 3box 3cxo
18838806 K.Watanabe (2008).
Exploring the biosynthesis of natural products and their inherent suitability for the rational design of desirable compounds through genetic engineering.
  Biosci Biotechnol Biochem, 72, 2491-2506.  
19039353 W.L.Kelly (2008).
Intramolecular cyclizations of polyketide biosynthesis: mining for a "Diels-Alderase"?
  Org Biomol Chem, 6, 4483-4493.  
17476389 B.T.Kelly, J.C.Baret, V.Taly, and A.D.Griffiths (2007).
Miniaturizing chemistry and biology in microdroplets.
  Chem Commun (Camb), (), 1773-1788.  
17985890 H.Zhang, J.A.White-Phillip, C.E.Melançon, H.J.Kwon, W.L.Yu, and H.W.Liu (2007).
Elucidation of the kijanimicin gene cluster: insights into the biosynthesis of spirotetronate antibiotics and nitrosugars.
  J Am Chem Soc, 129, 14670-14683.  
17457413 J.M.Serafimov, H.C.Lehmann, H.Oikawa, and D.Hilvert (2007).
Active site mutagenesis of the putative Diels-Alderase macrophomate synthase.
  Chem Commun (Camb), (), 1701-1703.  
16448503 E.G.Mogensen, M.P.Challen, and R.N.Strange (2006).
Reduction in solanapyrone phytotoxin production by Ascochyta rabiei transformed with Agrobacterium tumefaciens.
  FEMS Microbiol Lett, 255, 255-261.  
16614218 M.Yoshizawa, M.Tamura, and M.Fujita (2006).
Diels-alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis.
  Science, 312, 251-254.  
16528762 R.Wombacher, S.Keiper, S.Suhm, A.Serganov, D.J.Patel, and A.Jäschke (2006).
Control of stereoselectivity in an enzymatic reaction by backdoor access.
  Angew Chem Int Ed Engl, 45, 2469-2472.  
15723077 A.Serganov, S.Keiper, L.Malinina, V.Tereshko, E.Skripkin, C.Höbartner, A.Polonskaia, A.T.Phan, R.Wombacher, R.Micura, Z.Dauter, A.Jäschke, and D.J.Patel (2005).
Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation.
  Nat Struct Mol Biol, 12, 218-224.
PDB codes: 1ykq 1ykv 1yls
16163781 C.W.Zapf, B.A.Harrison, C.Drahl, and E.J.Sorensen (2005).
A Diels-Alder macrocyclization enables an efficient asymmetric synthesis of the antibacterial natural product abyssomicin C.
  Angew Chem Int Ed Engl, 44, 6533-6537.  
16260754 J.J.Agresti, B.T.Kelly, A.Jäschke, and A.D.Griffiths (2005).
Selection of ribozymes that catalyse multiple-turnover Diels-Alder cycloadditions by using in vitro compartmentalization.
  Proc Natl Acad Sci U S A, 102, 16170-16175.  
15744318 J.N.Pitt, and A.R.Ferré-D'Amaré (2005).
How RNA closes a Diel.
  Nat Struct Mol Biol, 12, 206-208.  
16003810 V.Gouverneur, and M.Reiter (2005).
Biocatalytic approaches to hetero-Diels-Alder adducts of carbonyl compounds.
  Chemistry, 11, 5806-5815.  
16204832 B.Ma, and R.Nussinov (2004).
From computational quantum chemistry to computational biology: experiments and computations are (full) partners.
  Phys Biol, 1, P23-P26.  
15190180 C.A.Morales, M.E.Layton, and M.D.Shair (2004).
Synthesis of (-)-longithorone A: using organic synthesis to probe a proposed biosynthesis.
  Proc Natl Acad Sci U S A, 101, 12036-12041.  
15213379 T.Ose, K.Watanabe, M.Yao, M.Honma, H.Oikawa, and I.Tanaka (2004).
Structure of macrophomate synthase.
  Acta Crystallogr D Biol Crystallogr, 60, 1187-1197.  
15739198 Y.Kita, and S.Akai (2004).
1-alkoxyvinyl esters: renaissance of half-century-old acyl donors with potential applicability.
  Chem Rec, 4, 363-372.  
14662384 M.Breuer, and B.Hauer (2003).
Carbon-carbon coupling in biotransformation.
  Curr Opin Biotechnol, 14, 570-576.  
14631754 S.Akai (2003).
[Development of novel asymmetric reactions oriented to next-generation enzymatic organic syntheses]
  Yakugaku Zasshi, 123, 919-931.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer