spacer
spacer

PDBsum entry 1id2

Go to PDB code: 
protein metals Protein-protein interface(s) links
Electron transport PDB id
1id2

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
106 a.a. *
Metals
_CU ×3
Waters ×122
* Residue conservation analysis
PDB id:
1id2
Name: Electron transport
Title: Crystal structure of amicyanin from paracoccus versutus (thiobacillus versutus)
Structure: Amicyanin. Chain: a, b, c. Engineered: yes
Source: Paracoccus versutus. Organism_taxid: 34007. Gene: mauc or ami. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.15Å     R-factor:   0.174    
Authors: A.Romero,H.Nar,A.Messerschmidt
Key ref:
A.Romero et al. (1994). Crystal structure analysis and refinement at 2.15 A resolution of amicyanin, a type I blue copper protein, from Thiobacillus versutus. J Mol Biol, 236, 1196-1211. PubMed id: 8120896 DOI: 10.1016/0022-2836(94)90021-3
Date:
03-Apr-01     Release date:   11-Apr-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P22365  (AMCY_PARVE) -  Amicyanin from Paracoccus versutus
Seq:
Struc:
132 a.a.
106 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1016/0022-2836(94)90021-3 J Mol Biol 236:1196-1211 (1994)
PubMed id: 8120896  
 
 
Crystal structure analysis and refinement at 2.15 A resolution of amicyanin, a type I blue copper protein, from Thiobacillus versutus.
A.Romero, H.Nar, R.Huber, A.Messerschmidt, A.P.Kalverda, G.W.Canters, R.Durley, F.S.Mathews.
 
  ABSTRACT  
 
The crystal structure of the type I blue copper protein amicyanin from Thiobacillus versutus has been determined by Patterson search techniques on the basis of the molecular model of amicyanin from Paracoccus denitrificans, and refined by energy-restrained least-squares methods. Amicyanin crystallizes in the trigonal space group P3(2) with unit cell dimensions of a = b = 87.40 A, c = 38.20 A. The asymmetric unit is composed of three independent molecules centred on the crystallographic 3(2) axes. The final R-value is 17.4% for 15,984 reflections to a resolution of 2.15 A. The polypeptide fold in amicyanin is based on the beta-sandwich structure commonly found in blue copper proteins. Nine beta strands are folded into two twisted beta-sheets that pack together with a filling of non-polar residues between them. The geometry of the copper site is similar to that of plastocyanin. There are four ligands, arranged approximately as a distorted tetrahedron, to the copper atom: His54, Cys93, His96 and Met99. One of the copper ligands, His96, is exposed to the surface and lies in the centre of a cluster of seven hydrophobic residues.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. A section (z= 14/42) of the difference Patterson map compute at 3.5 A resolution. Two sites relaed by translation of z, ) = (2/3, l/3) g' Ives rse to identical position in the difference Patterson map which in turn explains the elative peak heights of 2 : I or the 2 Harker peaks.
Figure 8.
Fgure 8. C:rvstal acking of amicyanin from T. versrt&. The 3 independent molecules of amicyanin are arranged as
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1994, 236, 1196-1211) copyright 1994.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
18250895 C.Dennison (2008).
The role of ligand-containing loops at copper sites in proteins.
  Nat Prod Rep, 25, 15-24.  
16795108 K.Sato, and C.Dennison (2006).
Active site comparison of CoII blue and green nitrite reductases.
  Chemistry, 12, 6647-6659.  
16234922 C.Dennison (2005).
Ligand and loop variations at type 1 copper sites: influence on structure and reactivity.
  Dalton Trans, (), 3436-3442.  
15048833 M.D.Harrison, and C.Dennison (2004).
Characterization of Arabidopsis thaliana stellacyanin: a comparison with umecyanin.
  Proteins, 55, 426-435.  
12885256 G.Battistuzzi, M.Bellei, M.Borsari, G.W.Canters, E.de Waal, L.J.Jeuken, A.Ranieri, and M.Sola (2003).
Control of metalloprotein reduction potential: compensation phenomena in the reduction thermodynamics of blue copper proteins.
  Biochemistry, 42, 9214-9220.  
12794870 V.Cunsolo, S.Foti, C.La Rosa, R.Saletti, G.W.Canters, and M.P.Verbeet (2003).
Monitoring of unfolding of metallo-proteins by electrospray ionization mass spectrometry.
  J Mass Spectrom, 38, 502-509.  
12450394 G.Battistuzzi, M.Borsari, G.W.Canters, E.de Waal, A.Leonardi, A.Ranieri, and M.Sola (2002).
Thermodynamics of the acid transition in blue copper proteins.
  Biochemistry, 41, 14293-14298.  
11565099 V.Cunsolo, S.Foti, C.La Rosa, R.Saletti, G.W.Canters, and M.P.Verbeet (2001).
Free energy for blue copper protein unfolding determined by electrospray ionisation mass spectrometry.
  Rapid Commun Mass Spectrom, 15, 1817-1825.  
10818346 K.C.Cheung, R.W.Strange, and S.S.Hasnain (2000).
3D EXAFS refinement of the Cu site of azurin sheds light on the nature of structural change at the metal centre in an oxidation-reduction process: an integrated approach combining EXAFS and crystallography.
  Acta Crystallogr D Biol Crystallogr, 56, 697-704.  
10924152 R.E.Diederix, G.W.Canters, and C.Dennison (2000).
The Met99Gln mutant of amicyanin from Paracoccus versutus.
  Biochemistry, 39, 9551-9560.  
9188741 A.V.Efimov (1997).
Structural trees for protein superfamilies.
  Proteins, 28, 241-260.  
8589245 R.Fattorusso, G.Morelli, A.Lombardi, F.Nastri, O.Maglio, G.D'Auria, C.Pedone, and V.Pavone (1995).
Design of metal ion binding peptides.
  Biopolymers, 37, 401-410.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer