PDBsum entry 1ici

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transcription PDB id
Protein chains
256 a.a. *
NAD ×2
_ZN ×2
Waters ×261
* Residue conservation analysis
PDB id:
Name: Transcription
Title: Crystal structure of a sir2 homolog-NAD complex
Structure: Transcriptional regulatory protein, sir2 family. Chain: a, b. Engineered: yes
Source: Archaeoglobus fulgidus. Organism_taxid: 2234. Gene: af1676. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
2.10Å     R-factor:   0.199     R-free:   0.249
Authors: J.Min,J.Landry,R.Sternglanz,R.-M.Xu
Key ref:
J.Min et al. (2001). Crystal structure of a SIR2 homolog-NAD complex. Cell, 105, 269-279. PubMed id: 11336676 DOI: 10.1016/S0092-8674(01)00317-8
01-Apr-01     Release date:   02-May-01    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
O28597  (NPD1_ARCFU) -  NAD-dependent protein deacylase 1
245 a.a.
256 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     peptidyl-lysine demalonylation   6 terms 
  Biochemical function     protein-malonyllysine demalonylase activity     7 terms  


DOI no: 10.1016/S0092-8674(01)00317-8 Cell 105:269-279 (2001)
PubMed id: 11336676  
Crystal structure of a SIR2 homolog-NAD complex.
J.Min, J.Landry, R.Sternglanz, R.M.Xu.
The SIR2 protein family comprises a novel class of nicotinamide-adenine dinucleotide (NAD)-dependent protein deacetylases that function in transcriptional silencing, DNA repair, and life-span extension in Saccharomyces cerevisiae. Two crystal structures of a SIR2 homolog from Archaeoglobus fulgidus complexed with NAD have been determined at 2.1 A and 2.4 A resolutions. The structures reveal that the protein consists of a large domain having a Rossmann fold and a small domain containing a three-stranded zinc ribbon motif. NAD is bound in a pocket between the two domains. A distinct mode of NAD binding and an unusual configuration of the zinc ribbon motif are observed. The structures also provide important insights into the catalytic mechanism of NAD-dependent protein deacetylation by this family of enzymes.
  Selected figure(s)  
Figure 1.
Figure 1. Sequence and Functional Conservation of SIR2-Af1
Figure 6.
Figure 6. A Proposed Mechanism of NAD-Dependent Deacetylation
  The above figures are reprinted by permission from Cell Press: Cell (2001, 105, 269-279) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21080423 P.Bheda, J.T.Wang, J.C.Escalante-Semerena, and C.Wolberger (2011).
Structure of Sir2Tm bound to a propionylated peptide.
  Protein Sci, 20, 131-139.
PDB code: 3pdh
20975832 C.J.Lynch, Z.H.Shah, S.J.Allison, S.U.Ahmed, J.Ford, L.J.Warnock, H.Li, M.Serrano, and J.Milner (2010).
SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53.
  PLoS One, 5, e13502.  
20563732 H.Yasukawa, and K.Yagita (2010).
Silent information regulator 2 proteins encoded by Cryptosporidium parasites.
  Parasitol Res, 107, 707-712.  
19824050 J.Schemies, U.Uciechowska, W.Sippl, and M.Jung (2010).
NAD(+) -dependent histone deacetylases (sirtuins) as novel therapeutic targets.
  Med Res Rev, 30, 861-889.  
  20885971 J.Soppa (2010).
Protein acetylation in archaea, bacteria, and eukaryotes.
  Archaea, 2010, 0.  
20392170 R.S.Zee, C.B.Yoo, D.R.Pimentel, D.H.Perlman, J.R.Burgoyne, X.Hou, M.E.McComb, C.E.Costello, R.A.Cohen, and M.M.Bachschmid (2010).
Redox regulation of sirtuin-1 by S-glutathiolation.
  Antioxid Redox Signal, 13, 1023-1032.  
19355989 D.Wang (2009).
Computational studies on the histone deacetylases and the design of selective histone deacetylase inhibitors.
  Curr Top Med Chem, 9, 241-256.  
19060927 E.Lara, A.Mai, V.Calvanese, L.Altucci, P.Lopez-Nieva, M.L.Martinez-Chantar, M.Varela-Rey, D.Rotili, A.Nebbioso, S.Ropero, G.Montoya, J.Oyarzabal, S.Velasco, M.Serrano, M.Witt, A.Villar-Garea, A.Inhof, J.M.Mato, M.Esteller, and M.F.Fraga (2009).
Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect.
  Oncogene, 28, 781-791.  
19136592 J.G.Gardner, and J.C.Escalante-Semerena (2009).
In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme A synthetase.
  J Bacteriol, 191, 1749-1755.  
19535340 L.Jin, W.Wei, Y.Jiang, H.Peng, J.Cai, C.Mao, H.Dai, W.Choy, J.E.Bemis, M.R.Jirousek, J.C.Milne, C.H.Westphal, and R.B.Perni (2009).
Crystal structures of human SIRT3 displaying substrate-induced conformational changes.
  J Biol Chem, 284, 24394-24405.
PDB codes: 3glr 3gls 3glt 3glu
19473964 M.M.Brent, A.Iwata, J.Carten, K.Zhao, and R.Marmorstein (2009).
Structure and Biochemical Characterization of Protein Acetyltransferase from Sulfolobus solfataricus.
  J Biol Chem, 284, 19412-19419.
PDB code: 3f8k
18955502 P.J.Lynch, and L.N.Rusche (2009).
A silencer promotes the assembly of silenced chromatin independently of recruitment.
  Mol Cell Biol, 29, 43-56.  
18997014 A.Minajigi, and C.S.Francklyn (2008).
RNA-assisted catalysis in a protein enzyme: The 2'-hydroxyl of tRNA(Thr) A76 promotes aminoacylation by threonyl-tRNA synthetase.
  Proc Natl Acad Sci U S A, 105, 17748-17753.  
18775325 C.C.Chou, Y.C.Li, and M.R.Gartenberg (2008).
Bypassing Sir2 and O-acetyl-ADP-ribose in transcriptional silencing.
  Mol Cell, 31, 650-659.  
18845844 C.L.Wang, J.Landry, and R.Sternglanz (2008).
A yeast sir2 mutant temperature sensitive for silencing.
  Genetics, 180, 1955-1962.  
18344406 D.Haldar, and R.T.Kamakaka (2008).
Schizosaccharomyces pombe Hst4 functions in DNA damage response by regulating histone H3 K56 acetylation.
  Eukaryot Cell, 7, 800-813.  
18360740 D.P.Dowling, L.Di Costanzo, H.A.Gennadios, and D.W.Christianson (2008).
Evolution of the arginase fold and functional diversity.
  Cell Mol Life Sci, 65, 2039-2055.  
  18329615 H.S.Kwon, M.M.Brent, R.Getachew, P.Jayakumar, L.F.Chen, M.Schnolzer, M.W.McBurney, R.Marmorstein, W.C.Greene, and M.Ott (2008).
Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation.
  Cell Host Microbe, 3, 158-167.  
19806227 I.Autiero, S.Costantini, and G.Colonna (2008).
Human sirt-1: molecular modeling and structure-function relationships of an unordered protein.
  PLoS One, 4, e7350.  
19049465 P.Hu, S.Wang, and Y.Zhang (2008).
Highly dissociative and concerted mechanism for the nicotinamide cleavage reaction in Sir2Tm enzyme suggested by ab initio QM/MM molecular dynamics simulations.
  J Am Chem Soc, 130, 16721-16728.  
18707607 T.Katayama, and H.Yasukawa (2008).
Analysis of Sir2E in the cellular slime mold Dictyostelium discoideum: cellular localization, spatial expression and overexpression.
  Dev Growth Differ, 50, 645-652.  
18786399 W.F.Hawse, K.G.Hoff, D.G.Fatkins, A.Daines, O.V.Zubkova, V.L.Schramm, W.Zheng, and C.Wolberger (2008).
Structural insights into intermediate steps in the Sir2 deacetylation reaction.
  Structure, 16, 1368-1377.
PDB codes: 3d4b 3d81
17355872 A.Schuetz, J.Min, T.Antoshenko, C.L.Wang, A.Allali-Hassani, A.Dong, P.Loppnau, M.Vedadi, A.Bochkarev, R.Sternglanz, and A.N.Plotnikov (2007).
Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin.
  Structure, 15, 377-389.
PDB code: 2nyr
17694090 A.Vaquero, R.Sternglanz, and D.Reinberg (2007).
NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs.
  Oncogene, 26, 5505-5520.  
17289592 B.D.Sanders, K.Zhao, J.T.Slama, and R.Marmorstein (2007).
Structural basis for nicotinamide inhibition and base exchange in Sir2 enzymes.
  Mol Cell, 25, 463-472.
PDB codes: 2od2 2od7 2od9 2qqf 2qqg
17377789 C.Hildmann, D.Riester, and A.Schwienhorst (2007).
Histone deacetylases--an important class of cellular regulators with a variety of functions.
  Appl Microbiol Biotechnol, 75, 487-497.  
17827348 C.J.Merrick, and M.T.Duraisingh (2007).
Plasmodium falciparum Sir2: an unusual sirtuin with dual histone deacetylase and ADP-ribosyltransferase activity.
  Eukaryot Cell, 6, 2081-2091.  
18019526 H.Lin (2007).
Nicotinamide adenine dinucleotide: beyond a redox coenzyme.
  Org Biomol Chem, 5, 2541-2554.  
17156081 H.Yang, J.A.Baur, A.Chen, C.Miller, J.K.Adams, A.Kisielewski, K.T.Howitz, R.E.Zipkin, and D.A.Sinclair (2007).
Design and synthesis of compounds that extend yeast replicative lifespan.
  Aging Cell, 6, 35-43.  
17242192 J.Mead, R.McCord, L.Youngster, M.Sharma, M.R.Gartenberg, and A.K.Vershon (2007).
Swapping the gene-specific and regional silencing specificities of the Hst1 and Sir2 histone deacetylases.
  Mol Cell Biol, 27, 2466-2475.  
17676954 M.A.Hickman, and L.N.Rusche (2007).
Substitution as a mechanism for genetic robustness: the duplicated deacetylases Hst1p and Sir2p in Saccharomyces cerevisiae.
  PLoS Genet, 3, e126.  
17715127 N.Ahuja, B.Schwer, S.Carobbio, D.Waltregny, B.J.North, V.Castronovo, P.Maechler, and E.Verdin (2007).
Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase.
  J Biol Chem, 282, 33583-33592.  
17984971 S.Lall (2007).
Primers on chromatin.
  Nat Struct Mol Biol, 14, 1110-1115.  
16756498 A.A.Sauve, C.Wolberger, V.L.Schramm, and J.D.Boeke (2006).
The biochemistry of sirtuins.
  Annu Rev Biochem, 75, 435-465.  
17042794 A.L.Cai, G.J.Zipfel, and C.T.Sheline (2006).
Zinc neurotoxicity is dependent on intracellular NAD levels and the sirtuin pathway.
  Eur J Neurosci, 24, 2169-2176.  
16520376 A.N.Khan, and P.N.Lewis (2006).
Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases.
  J Biol Chem, 281, 11702-11711.  
16388603 B.C.Smith, and J.M.Denu (2006).
Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine.
  Biochemistry, 45, 272-282.  
17035629 B.Yang, and A.L.Kirchmaier (2006).
Bypassing the catalytic activity of SIR2 for SIR protein spreading in Saccharomyces cerevisiae.
  Mol Biol Cell, 17, 5287-5297.  
16717101 D.A.King, B.E.Hall, M.A.Iwamoto, K.Z.Win, J.F.Chang, and T.Ellenberger (2006).
Domain structure and protein interactions of the silent information regulator Sir3 revealed by screening a nested deletion library of protein fragments.
  J Biol Chem, 281, 20107-20119.  
17048004 D.Sereno, B.Vergnes, F.Mathieu-Daude, A.Cordeiro da Silva, and A.Ouaissi (2006).
Looking for putative functions of the Leishmania cytosolic SIR2 deacetylase.
  Parasitol Res, 100, 1-9.  
16905097 K.G.Hoff, J.L.Avalos, K.Sens, and C.Wolberger (2006).
Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide.
  Structure, 14, 1231-1240.
PDB codes: 2h4f 2h4h 2h4j 2h59
16923962 M.Fu, M.Liu, A.A.Sauve, X.Jiao, X.Zhang, X.Wu, M.J.Powell, T.Yang, W.Gu, M.L.Avantaggiati, N.Pattabiraman, T.G.Pestell, F.Wang, A.A.Quong, C.Wang, and R.G.Pestell (2006).
Hormonal control of androgen receptor function through SIRT1.
  Mol Cell Biol, 26, 8122-8135.  
16912299 M.P.Egloff, H.Malet, A.Putics, M.Heinonen, H.Dutartre, A.Frangeul, A.Gruez, V.Campanacci, C.Cambillau, J.Ziebuhr, T.Ahola, and B.Canard (2006).
Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains.
  J Virol, 80, 8493-8502.
PDB code: 2fav
17103016 T.Huhtiniemi, C.Wittekindt, T.Laitinen, J.Leppänen, A.Salminen, A.Poso, and M.Lahtela-Kakkonen (2006).
Comparative and pharmacophore model for deacetylase SIRT1.
  J Comput Aided Mol Des, 20, 589-599.  
16358325 T.Sulea, H.A.Lindner, E.O.Purisima, and R.Ménard (2006).
Binding site-based classification of coronaviral papain-like proteases.
  Proteins, 62, 760-775.  
15860278 B.Vergnes, L.Vanhille, A.Ouaissi, and D.Sereno (2005).
Stage-specific antileishmanial activity of an inhibitor of SIR2 histone deacetylase.
  Acta Trop, 94, 107-115.  
15642260 E.A.Sickmier, D.Brekasis, S.Paranawithana, J.B.Bonanno, M.S.Paget, S.K.Burley, and C.L.Kielkopf (2005).
X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing.
  Structure, 13, 43-54.
PDB code: 1xcb
15640142 G.Blander, J.Olejnik, E.Krzymanska-Olejnik, T.McDonagh, M.Haigis, M.B.Yaffe, and L.Guarente (2005).
SIRT1 shows no substrate specificity in vitro.
  J Biol Chem, 280, 9780-9785.  
15780941 J.L.Avalos, K.M.Bever, and C.Wolberger (2005).
Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme.
  Mol Cell, 17, 855-868.
PDB codes: 1yc2 1yc5
16039130 J.M.Denu (2005).
Vitamin B3 and sirtuin function.
  Trends Biochem Sci, 30, 479-483.  
16122969 J.M.Denu (2005).
The Sir 2 family of protein deacetylases.
  Curr Opin Chem Biol, 9, 431-440.  
15898057 M.Biel, V.Wascholowski, and A.Giannis (2005).
Epigenetics--an epicenter of gene regulation: histones and histone-modifying enzymes.
  Angew Chem Int Ed Engl, 44, 3186-3216.  
15988008 P.J.Lynch, H.B.Fraser, E.Sevastopoulos, J.Rine, and L.N.Rusche (2005).
Sum1p, the origin recognition complex, and the spreading of a promoter-specific repressor in Saccharomyces cerevisiae.
  Mol Cell Biol, 25, 5920-5932.  
16006743 S.Hisahara, S.Chiba, H.Matsumoto, and Y.Horio (2005).
Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2alpha).
  J Pharmacol Sci, 98, 200-204.  
15899897 V.J.Starai, J.G.Gardner, and J.C.Escalante-Semerena (2005).
Residue Leu-641 of Acetyl-CoA synthetase is critical for the acetylation of residue Lys-609 by the Protein acetyltransferase enzyme of Salmonella enterica.
  J Biol Chem, 280, 26200-26205.  
15128440 B.J.North, and E.Verdin (2004).
Sirtuins: Sir2-related NAD-dependent protein deacetylases.
  Genome Biol, 5, 224.  
14576157 B.K.Mohanty, and D.Bastia (2004).
Binding of the replication terminator protein Fob1p to the Ter sites of yeast causes polar fork arrest.
  J Biol Chem, 279, 1932-1941.  
15189148 G.Blander, and L.Guarente (2004).
The Sir2 family of protein deacetylases.
  Annu Rev Biochem, 73, 417-435.  
15150415 K.Zhao, R.Harshaw, X.Chai, and R.Marmorstein (2004).
Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
  Proc Natl Acad Sci U S A, 101, 8563-8568.
PDB codes: 1szc 1szd
15466593 L.M.Iyer, K.S.Makarova, E.V.Koonin, and L.Aravind (2004).
Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
  Nucleic Acids Res, 32, 5260-5279.  
15269219 M.T.Schmidt, B.C.Smith, M.D.Jackson, and J.M.Denu (2004).
Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation.
  J Biol Chem, 279, 40122-40129.  
12655046 D.T.Logan, E.Mulliez, K.M.Larsson, S.Bodevin, M.Atta, P.E.Garnaud, B.M.Sjoberg, and M.Fontecave (2003).
A metal-binding site in the catalytic subunit of anaerobic ribonucleotide reductase.
  Proc Natl Acad Sci U S A, 100, 3826-3831.
PDB code: 1hk8
12517451 J.M.Denu (2003).
Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases.
  Trends Biochem Sci, 28, 41-48.  
12694606 J.N.Reeve (2003).
Archaeal chromatin and transcription.
  Mol Microbiol, 48, 587-598.  
12966141 K.J.Bitterman, O.Medvedik, and D.A.Sinclair (2003).
Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin.
  Microbiol Mol Biol Rev, 67, 376.  
14502267 K.Zhao, X.Chai, A.Clements, and R.Marmorstein (2003).
Structure and autoregulation of the yeast Hst2 homolog of Sir2.
  Nat Struct Biol, 10, 864-871.
PDB code: 1q14
14604530 K.Zhao, X.Chai, and R.Marmorstein (2003).
Structure of the yeast Hst2 protein deacetylase in ternary complex with 2'-O-acetyl ADP ribose and histone peptide.
  Structure, 11, 1403-1411.
PDB codes: 1q17 1q1a
12676793 L.N.Rusche, A.L.Kirchmaier, and J.Rine (2003).
The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae.
  Annu Rev Biochem, 72, 481-516.  
14522996 M.D.Jackson, M.T.Schmidt, N.J.Oppenheimer, and J.M.Denu (2003).
Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases.
  J Biol Chem, 278, 50985-50998.  
14534292 M.Hirao, J.Posakony, M.Nelson, H.Hruby, M.Jung, J.A.Simon, and A.Bedalov (2003).
Identification of selective inhibitors of NAD+-dependent deacetylases using phenotypic screens in yeast.
  J Biol Chem, 278, 52773-52782.  
12527760 S.S.Krishna, I.Majumdar, and N.V.Grishin (2003).
Structural classification of zinc fingers: survey and summary.
  Nucleic Acids Res, 31, 532-550.  
  12618394 V.J.Starai, H.Takahashi, J.D.Boeke, and J.C.Escalante-Semerena (2003).
Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae.
  Genetics, 163, 545-555.  
11950950 C.M.Armstrong, M.Kaeberlein, S.I.Imai, and L.Guarente (2002).
Mutations in Saccharomyces cerevisiae gene SIR2 can have differential effects on in vivo silencing phenotypes and in vitro histone deacetylation activity.
  Mol Biol Cell, 13, 1427-1438.  
11841934 C.M.Grozinger, and S.L.Schreiber (2002).
Deacetylase enzymes: biological functions and the use of small-molecule inhibitors.
  Chem Biol, 9, 3.  
11836534 C.Qiu, K.Sawada, X.Zhang, and X.Cheng (2002).
The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds.
  Nat Struct Biol, 9, 217-224.
PDB code: 1khc
11739383 D.D.Fischer, R.Cai, U.Bhatia, F.A.Asselbergs, C.Song, R.Terry, N.Trogani, R.Widmer, P.Atadja, and D.Cohen (2002).
Isolation and characterization of a novel class II histone deacetylase, HDAC10.
  J Biol Chem, 277, 6656-6666.  
11927569 E.Bochkareva, S.Korolev, S.P.Lees-Miller, and A.Bochkarev (2002).
Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA.
  EMBO J, 21, 1855-1863.
PDB code: 1l1o
12006491 E.Langley, M.Pearson, M.Faretta, U.M.Bauer, R.A.Frye, S.Minucci, P.G.Pelicci, and T.Kouzarides (2002).
Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence.
  EMBO J, 21, 2383-2396.  
12024030 G.J.Hoppe, J.C.Tanny, A.D.Rudner, S.A.Gerber, S.Danaie, S.P.Gygi, and D.Moazed (2002).
Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation.
  Mol Cell Biol, 22, 4167-4180.  
12377115 J.C.Tanny, and D.Moazed (2002).
Recognition of acetylated proteins: lessons from an ancient family of enzymes.
  Structure, 10, 1290-1292.  
12091395 J.H.Chang, H.C.Kim, K.Y.Hwang, J.W.Lee, S.P.Jackson, S.D.Bell, and Y.Cho (2002).
Structural basis for the NAD-dependent deacetylase mechanism of Sir2.
  J Biol Chem, 277, 34489-34498.
PDB codes: 1m2g 1m2h 1m2j 1m2k 1m2n
12389037 J.Min, X.Zhang, X.Cheng, S.I.Grewal, and R.M.Xu (2002).
Structure of the SET domain histone lysine methyltransferase Clr4.
  Nat Struct Biol, 9, 828-832.
PDB codes: 1mvh 1mvx
12297502 K.J.Bitterman, R.M.Anderson, H.Y.Cohen, M.Latorre-Esteves, and D.A.Sinclair (2002).
Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.
  J Biol Chem, 277, 45099-45107.  
12134062 L.N.Rusché, A.L.Kirchmaier, and J.Rine (2002).
Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae.
  Mol Biol Cell, 13, 2207-2222.  
11893743 M.D.Jackson, and J.M.Denu (2002).
Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases.
  J Biol Chem, 277, 18535-18544.  
11812793 M.T.Borra, F.J.O'Neill, M.D.Jackson, B.Marshall, E.Verdin, K.R.Foltz, and J.M.Denu (2002).
Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases.
  J Biol Chem, 277, 12632-12641.  
12438358 N.Ariel, A.Zvi, H.Grosfeld, O.Gat, Y.Inbar, B.Velan, S.Cohen, and A.Shafferman (2002).
Search for potential vaccine candidate open reading frames in the Bacillus anthracis virulence plasmid pXO1: in silico and in vitro screening.
  Infect Immun, 70, 6817-6827.  
12429083 R.Marmorstein (2002).
Dehydrogenases, NAD, and transcription--what's the connection?
  Structure, 10, 1465-1466.  
11935028 S.D.Bell, C.H.Botting, B.N.Wardleworth, S.P.Jackson, and M.F.White (2002).
The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation.
  Science, 296, 148-151.  
  12399383 S.N.Garcia, and L.Pillus (2002).
A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae.
  Genetics, 162, 721-736.  
12419229 V.Kumar, J.E.Carlson, K.A.Ohgi, T.A.Edwards, D.W.Rose, C.R.Escalante, M.G.Rosenfeld, and A.K.Aggarwal (2002).
Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase.
  Mol Cell, 10, 857-869.
PDB code: 1mx3
11752457 A.Bedalov, T.Gatbonton, W.P.Irvine, D.E.Gottschling, and J.A.Simon (2001).
Identification of a small molecule inhibitor of Sir2p.
  Proc Natl Acad Sci U S A, 98, 15113-15118.  
11336664 R.N.Dutnall, and L.Pillus (2001).
Deciphering NAD-dependent deacetylases.
  Cell, 105, 161-164.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.