spacer
spacer

PDBsum entry 1ias

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
1ias
Jmol
Contents
Protein chains
330 a.a. *
Ligands
SO4 ×15
* Residue conservation analysis
PDB id:
1ias
Name: Transferase
Title: Cytoplasmic domain of unphosphorylated type i tgf-beta receptor crystallized without fkbp12
Structure: Tgf-beta receptor type i. Chain: a, b, c, d, e. Fragment: cytoplasmic domain (residues 162-503). Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108.
Biol. unit: Decamer (from PQS)
Resolution:
2.90Å     R-factor:   0.255     R-free:   0.284
Authors: M.Huse,T.W.Muir,Y.-G.Chen,J.Kuriyan,J.Massague
Key ref:
M.Huse et al. (2001). The TGF beta receptor activation process: an inhibitor- to substrate-binding switch. Mol Cell, 8, 671-682. PubMed id: 11583628 DOI: 10.1016/S1097-2765(01)00332-X
Date:
23-Mar-01     Release date:   03-Oct-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P36897  (TGFR1_HUMAN) -  TGF-beta receptor type-1
Seq:
Struc:
503 a.a.
330 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.7.11.30  - Receptor protein serine/threonine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + [receptor-protein] = ADP + [receptor-protein] phosphate
ATP
+ [receptor-protein]
= ADP
+ [receptor-protein] phosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     membrane   1 term 
  Biological process     transmembrane receptor protein serine/threonine kinase signaling pathway   2 terms 
  Biochemical function     transferase activity, transferring phosphorus-containing groups     6 terms  

 

 
    Added reference    
 
 
DOI no: 10.1016/S1097-2765(01)00332-X Mol Cell 8:671-682 (2001)
PubMed id: 11583628  
 
 
The TGF beta receptor activation process: an inhibitor- to substrate-binding switch.
M.Huse, T.W.Muir, L.Xu, Y.G.Chen, J.Kuriyan, J.Massagué.
 
  ABSTRACT  
 
The type I TGF beta receptor (T beta R-I) is activated by phosphorylation of the GS region, a conserved juxtamembrane segment located just N-terminal to the kinase domain. We have studied the molecular mechanism of receptor activation using a homogeneously tetraphosphorylated form of T beta R-I, prepared using protein semisynthesis. Phosphorylation of the GS region dramatically enhances the specificity of T beta R-I for the critical C-terminal serines of Smad2. In addition, tetraphosphorylated T beta R-I is bound specifically by Smad2 in a phosphorylation-dependent manner and is no longer recognized by the inhibitory protein FKBP12. Thus, phosphorylation activates T beta R-I by switching the GS region from a binding site for an inhibitor into a binding surface for substrate. Our observations suggest that phosphoserine/phosphothreonine-dependent localization is a key feature of the T beta R-I/Smad activation process.
 
  Selected figure(s)  
 
Figure 6.
Figure 6. The Structure of TβR-I in the Absence of FKBP12(A) The structure of TβR-I in complex with NPC-30345 (left) is compared with the structure of TβR-I in complex with FKBP12 (right) (Huse et al., 1999). The TβR-I protein kinase domain is colored blue with the GS region green and the activation segment magenta. FKBP12 is shown in red. |F[o]| − |F[c]| difference density for NPC-30345 within the nucleotide binding groove is depicted using wire mesh at two contour levels. 3σ electron density is colored cyan, while 6σ density is red. Asp 351 and Arg 372, which form an ion pair in the TβR-I/FKBP12 complex, are illustrated in both images. All ribbon diagrams were generated using RIBBONS (Carson, 1991).(B) The GS region from the TβR-I/NPC-30345 complex (left) is compared to the GS region from the TβR-I/FKBP12 complex (right) (Huse et al., 1999). The kinase N-lobe is shown in blue with the GS region in green. The αGS1 and αGS2 helices are indicated along with selected residues at the FKBP12 interface. On the left, the GS loops from all five TβR-I molecules in the asymmetric unit of the TβR-I/NPC-30345 crystals have been overlaid and are colored orange. L195 and L196 are directly engaged by FKBP12 and mark the binding site. Hydrogen bonds are shown in dashed purple.(C) The TβR-I kinase domain remains in an inhibited conformation in the absence of FKBP12. On the left, the N-lobe from the TβR-I/NPC-30345 complex is aligned using its β sheet with TβR-I from the FKBP12 complex (Huse et al., 1999) as well as PKA in active conformation (Zheng et al., 1993). The proteins are viewed from the ATP binding site looking up through the β sheet. The ATP molecule from the PKA structure is shown in ball and stick representation. On the right, the N-lobe from the TβR-I/NPC-30345 complex is viewed in isolation. |F[o]| − |F[c]| electron density for NPC-30345 is shown in wire mesh at three different contour levels, 3σ in cyan, 6σ in yellow, and 8σ in magenta. The portion of the inhibitor that extends into the back of the nucleotide binding groove is marked with an asterisk. S280 and L278, which pack against this element, are shown in ball and stick representation along with Y249, which forms the bottom right portion of the ATP binding pocket. The ATP molecule from the PKA structure is shown in thin red lines for comparison
Figure 7.
Figure 7. A Model for TβR-I ActivationThe kinase domain is colored in shades of blue with the N-lobe β sheet, C helix, and C-lobe schematically depicted. The GS region is green, FKBP12 red, and Smad2 yellow. The TβR-I/Smad2 interaction is depicted as having an extended interface that, in addition to incorporating phosphate recognition by the positive surface patch of Smad2, also involves the L45 loop-L3 loop interaction
 
  The above figures are reprinted by permission from Cell Press: Mol Cell (2001, 8, 671-682) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22992590 J.Massagué (2012).
TGFβ signalling in context.
  Nat Rev Mol Cell Biol, 13, 616-630.  
21340697 E.M.Shore, and F.S.Kaplan (2011).
Role of altered signal transduction in heterotopic ossification and fibrodysplasia ossificans progressiva.
  Curr Osteoporos Rep, 9, 83-88.  
20410014 A.Yoshimura, Y.Wakabayashi, and T.Mori (2010).
Cellular and molecular basis for the regulation of inflammation by TGF-beta.
  J Biochem, 147, 781-792.  
20590657 C.J.Park, S.W.Han, X.Chen, and P.C.Ronald (2010).
Elucidation of XA21-mediated innate immunity.
  Cell Microbiol, 12, 1017-1025.  
20703219 E.M.Shore, and F.S.Kaplan (2010).
Inherited human diseases of heterotopic bone formation.
  Nat Rev Rheumatol, 6, 518-527.  
20890540 L.Li, B.P.Orner, T.Huang, A.P.Hinck, and L.L.Kiessling (2010).
Peptide ligands that use a novel binding site to target both TGF-β receptors.
  Mol Biosyst, 6, 2392-2402.  
20101206 N.Garamszegi, S.P.Garamszegi, P.Samavarchi-Tehrani, E.Walford, M.M.Schneiderbauer, J.L.Wrana, and S.P.Scully (2010).
Extracellular matrix-induced transforming growth factor-beta receptor signaling dynamics.
  Oncogene, 29, 2368-2380.  
20501893 N.Ricard, M.Bidart, C.Mallet, G.Lesca, S.Giraud, R.Prudent, J.J.Feige, and S.Bailly (2010).
Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations.
  Blood, 116, 1604-1612.  
20440848 S.Hong, H.J.Lee, S.J.Kim, and K.B.Hahm (2010).
Connection between inflammation and carcinogenesis in gastrointestinal tract: focus on TGF-beta signaling.
  World J Gastroenterol, 16, 2080-2093.  
20192752 T.W.Kim, and Z.Y.Wang (2010).
Brassinosteroid signal transduction from receptor kinases to transcription factors.
  Annu Rev Plant Biol, 61, 681-704.  
18841463 A.R.Tan, G.Alexe, and M.Reiss (2009).
Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer?
  Breast Cancer Res Treat, 115, 453-495.  
19050696 D.Padua, and J.Massagué (2009).
Roles of TGFbeta in metastasis.
  Cell Res, 19, 89.  
19085907 F.S.Kaplan, M.Xu, P.Seemann, J.M.Connor, D.L.Glaser, L.Carroll, P.Delai, E.Fastnacht-Urban, S.J.Forman, G.Gillessen-Kaesbach, J.Hoover-Fong, B.Köster, R.M.Pauli, W.Reardon, S.A.Zaidi, M.Zasloff, R.Morhart, S.Mundlos, J.Groppe, and E.M.Shore (2009).
Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1.
  Hum Mutat, 30, 379-390.  
19896889 F.S.Kaplan, R.J.Pignolo, and E.M.Shore (2009).
The FOP metamorphogene encodes a novel type I receptor that dysregulates BMP signaling.
  Cytokine Growth Factor Rev, 20, 399-407.  
19648010 J.S.Kang, C.Liu, and R.Derynck (2009).
New regulatory mechanisms of TGF-beta receptor function.
  Trends Cell Biol, 19, 385-394.  
19330033 K.A.Petrie, W.H.Lee, A.N.Bullock, J.J.Pointon, R.Smith, R.G.Russell, M.A.Brown, B.P.Wordsworth, and J.T.Triffitt (2009).
Novel mutations in ACVR1 result in atypical features in two fibrodysplasia ossificans progressiva patients.
  PLoS ONE, 4, e5005.  
19114991 K.H.Wrighton, X.Lin, and X.H.Feng (2009).
Phospho-control of TGF-beta superfamily signaling.
  Cell Res, 19, 8.  
19632467 L.M.Szewczuk, M.K.Tarrant, and P.A.Cole (2009).
Protein phosphorylation by semisynthesis: from paper to practice.
  Methods Enzymol, 462, 1.  
19489734 M.K.Tarrant, and P.A.Cole (2009).
The chemical biology of protein phosphorylation.
  Annu Rev Biochem, 78, 797-825.  
18830232 R.Bocciardi, D.Bordo, M.Di Duca, M.Di Rocco, and R.Ravazzolo (2009).
Mutational analysis of the ACVR1 gene in Italian patients affected with fibrodysplasia ossificans progressiva: confirmations and advancements.
  Eur J Hum Genet, 17, 311-318.  
19105183 R.Karlova, S.Boeren, W.van Dongen, M.Kwaaitaal, J.Aker, J.Vervoort, and S.de Vries (2009).
Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases.
  Proteomics, 9, 368-379.  
19357077 Y.J.Xu, and T.J.Kelly (2009).
Autoinhibition and autoactivation of the DNA replication checkpoint kinase cds1.
  J Biol Chem, 284, 16016-16027.  
18957937 D.Zheng, G.Chen, B.Guo, G.Cheng, and H.Tang (2008).
PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production.
  Cell Res, 18, 1105-1113.  
18590993 E.M.Shore, and F.S.Kaplan (2008).
Insights from a rare genetic disorder of extra-skeletal bone formation, fibrodysplasia ossificans progressiva (FOP).
  Bone, 43, 427-433.  
18979151 F.S.Kaplan, Q.Shen, V.Lounev, P.Seemann, J.Groppe, T.Katagiri, R.J.Pignolo, and E.M.Shore (2008).
Skeletal metamorphosis in fibrodysplasia ossificans progressiva (FOP).
  J Bone Miner Metab, 26, 521-530.  
18773928 L.L.Hoover, E.G.Burton, M.L.O'Neill, B.A.Brooks, S.Sreedharan, N.A.Dawson, and S.W.Kubalak (2008).
Retinoids regulate TGFbeta signaling at the level of Smad2 phosphorylation and nuclear accumulation.
  Biochim Biophys Acta, 1783, 2279-2286.  
18924136 T.W.Muir (2008).
Studying protein structure and function using semisynthesis.
  Biopolymers, 90, 743-750.  
18792765 Y.Y.Wan, and R.A.Flavell (2008).
Tgf-Beta and regulatory T cell in immunity and autoimmunity.
  J Clin Immunol, 28, 647-659.  
17340185 F.O.Baxter, K.Neoh, and M.C.Tevendale (2007).
The beginning of the end: death signaling in early involution.
  J Mammary Gland Biol Neoplasia, 12, 3.  
17477807 F.S.Kaplan, D.L.Glaser, R.J.Pignolo, and E.M.Shore (2007).
A new era for fibrodysplasia ossificans progressiva: a druggable target for the second skeleton.
  Expert Opin Biol Ther, 7, 705-712.  
17572636 J.C.Groppe, E.M.Shore, and F.S.Kaplan (2007).
Functional modeling of the ACVR1 (R206H) mutation in FOP.
  Clin Orthop Relat Res, 462, 87-92.  
17643432 P.T.Loverde, A.Osman, and A.Hinck (2007).
Schistosoma mansoni: TGF-beta signaling pathways.
  Exp Parasitol, 117, 304-317.  
17893364 S.Han, P.Loulakis, M.Griffor, and Z.Xie (2007).
Crystal structure of activin receptor type IIB kinase domain from human at 2.0 Angstrom resolution.
  Protein Sci, 16, 2272-2277.
PDB code: 2qlu
18029417 T.Ikura, and N.Ito (2007).
Requirements for peptidyl-prolyl isomerization activity: a comprehensive mutational analysis of the substrate-binding cavity of FK506-binding protein 12.
  Protein Sci, 16, 2618-2625.  
17283070 W.Chen, S.S.Lam, H.Srinath, C.A.Schiffer, W.E.Royer, and K.Lin (2007).
Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling.
  J Biol Chem, 282, 11365-11376.  
16862174 Y.Inoue, Y.Itoh, K.Abe, T.Okamoto, H.Daitoku, A.Fukamizu, K.Onozaki, and H.Hayashi (2007).
Smad3 is acetylated by p300/CBP to regulate its transactivation activity.
  Oncogene, 26, 500-508.  
17525753 Y.P.Rubtsov, and A.Y.Rudensky (2007).
TGFbeta signalling in control of T-cell-mediated self-reactivity.
  Nat Rev Immunol, 7, 443-453.  
17979848 Y.Y.Wan, and R.A.Flavell (2007).
'Yin-Yang' functions of transforming growth factor-beta and T regulatory cells in immune regulation.
  Immunol Rev, 220, 199-213.  
16803883 C.Smyczynski, F.Roudier, L.Gissot, E.Vaillant, O.Grandjean, H.Morin, T.Masson, Y.Bellec, D.Geelen, and J.D.Faure (2006).
The C terminus of the immunophilin PASTICCINO1 is required for plant development and for interaction with a NAC-like transcription factor.
  J Biol Chem, 281, 25475-25484.  
16642017 E.M.Shore, M.Xu, G.J.Feldman, D.A.Fenstermacher, T.J.Cho, I.H.Choi, J.M.Connor, P.Delai, D.L.Glaser, M.LeMerrer, R.Morhart, J.G.Rogers, R.Smith, J.T.Triffitt, J.A.Urtizberea, M.Zasloff, M.A.Brown, and F.S.Kaplan (2006).
A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva.
  Nat Genet, 38, 525-527.  
16551245 M.O.Li, Y.Y.Wan, S.Sanjabi, A.K.Robertson, and R.A.Flavell (2006).
Transforming growth factor-beta regulation of immune responses.
  Annu Rev Immunol, 24, 99.  
16373505 Q.Su, S.Wang, D.Baltzis, L.K.Qu, A.H.Wong, and A.E.Koromilas (2006).
Tyrosine phosphorylation acts as a molecular switch to full-scale activation of the eIF2alpha RNA-dependent protein kinase.
  Proc Natl Acad Sci U S A, 103, 63-68.  
16785228 R.I.Koleva, B.A.Conley, D.Romero, K.S.Riley, J.A.Marto, A.Lux, and C.P.Vary (2006).
Endoglin structure and function: Determinants of endoglin phosphorylation by transforming growth factor-beta receptors.
  J Biol Chem, 281, 25110-25123.  
16528786 R.P.Clausen (2006).
Organic chemistry at the interface to biology.
  Chembiochem, 7, 845-849.  
17130172 W.Pirovano, K.A.Feenstra, and J.Heringa (2006).
Sequence comparison by sequence harmony identifies subtype-specific functional sites.
  Nucleic Acids Res, 34, 6540-6548.  
16903910 Y.Y.Wan, and R.A.Flavell (2006).
The roles for cytokines in the generation and maintenance of regulatory T cells.
  Immunol Rev, 212, 114-130.  
16699538 Z.Y.Wang, Q.Wang, K.Chong, F.Wang, L.Wang, M.Bai, and C.Jia (2006).
The brassinosteroid signal transduction pathway.
  Cell Res, 16, 427-434.  
15869385 B.L.Nilsson, M.B.Soellner, and R.T.Raines (2005).
Chemical synthesis of proteins.
  Annu Rev Biophys Biomol Struct, 34, 91.  
16226484 D.Schwarzer, and P.A.Cole (2005).
Protein semisynthesis and expressed protein ligation: chasing a protein's tail.
  Curr Opin Chem Biol, 9, 561-569.  
16324212 T.Kobayashi, X.Liu, H.J.Kim, T.Kohyama, F.Q.Wen, S.Abe, Q.Fang, Y.K.Zhu, J.R.Spurzem, P.Bitterman, and S.I.Rennard (2005).
TGF-beta1 and serum both stimulate contraction but differentially affect apoptosis in 3D collagen gels.
  Respir Res, 6, 141.  
16212511 X.H.Feng, and R.Derynck (2005).
Specificity and versatility in tgf-beta signaling through Smads.
  Annu Rev Cell Dev Biol, 21, 659-693.  
16042389 Z.Ding, G.I.Lee, X.Liang, F.Gallazzi, A.Arunima, and S.R.Van Doren (2005).
PhosphoThr peptide binding globally rigidifies much of the FHA domain from Arabidopsis receptor kinase-associated protein phosphatase.
  Biochemistry, 44, 10119-10134.  
15144564 C.Nourry, L.Maksumova, M.Pang, X.Liu, and T.Wang (2004).
Direct interaction between Smad3, APC10, CDH1 and HEF1 in proteasomal degradation of HEF1.
  BMC Cell Biol, 5, 20.  
15210694 I.Yakymovych, C.H.Heldin, and S.Souchelnytskyi (2004).
Smad2 phosphorylation by type I receptor: contribution of arginine 462 and cysteine 463 In the C terminus of Smad2 for specificity.
  J Biol Chem, 279, 35781-35787.  
15573100 J.M.Yingling, K.L.Blanchard, and J.S.Sawyer (2004).
Development of TGF-beta signalling inhibitors for cancer therapy.
  Nat Rev Drug Discov, 3, 1011-1022.  
15599909 L.Wang, and P.G.Schultz (2004).
Expanding the genetic code.
  Angew Chem Int Ed Engl, 44, 34-66.  
14720321 M.Kondo, H.Suzuki, K.Takehara, K.Miyazono, and M.Kato (2004).
Transforming growth factor-beta signaling is differentially inhibited by Smad2D450E and Smad3D407E.
  Cancer Sci, 95, 12-17.  
14746809 M.de Caestecker (2004).
The transforming growth factor-beta superfamily of receptors.
  Cytokine Growth Factor Rev, 15, 1.  
15192088 T.T.Maliekal, R.J.Anto, and D.Karunagaran (2004).
Differential activation of Smads in HeLa and SiHa cells that differ in their response to transforming growth factor-beta.
  J Biol Chem, 279, 36287-36292.  
12794086 A.Morén, U.Hellman, Y.Inada, T.Imamura, C.H.Heldin, and A.Moustakas (2003).
Differential ubiquitination defines the functional status of the tumor suppressor Smad4.
  J Biol Chem, 278, 33571-33582.  
12614348 B.Malissen (2003).
An evolutionary and structural perspective on T cell antigen receptor function.
  Immunol Rev, 191, 7.  
14555996 B.Y.Qin, C.Liu, S.S.Lam, H.Srinath, R.Delston, J.J.Correia, R.Derynck, and K.Lin (2003).
Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation.
  Nat Struct Biol, 10, 913-921.
PDB code: 1qwt
12810716 G.B.Bolger, A.H.Peden, M.R.Steele, C.MacKenzie, D.G.McEwan, D.A.Wallace, E.Huston, G.S.Baillie, and M.D.Houslay (2003).
Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2.
  J Biol Chem, 278, 33351-33363.  
14500786 G.I.Lee, Z.Ding, J.C.Walker, and S.R.Van Doren (2003).
NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase.
  Proc Natl Acad Sci U S A, 100, 11261-11266.
PDB codes: 1mzk 1n4t
12495863 J.P.Himanen, and D.B.Nikolov (2003).
Eph signaling: a structural view.
  Trends Neurosci, 26, 46-51.  
14523231 K.Lehmann, P.Seemann, S.Stricker, M.Sammar, B.Meyer, K.Süring, F.Majewski, S.Tinschert, K.H.Grzeschik, D.Müller, P.Knaus, P.Nürnberg, and S.Mundlos (2003).
Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2.
  Proc Natl Acad Sci U S A, 100, 12277-12282.  
12876289 K.Song, S.C.Cornelius, M.Reiss, and D.Danielpour (2003).
Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3-kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2.
  J Biol Chem, 278, 38342-38351.  
14640939 M.Levis, and D.Small (2003).
Novel FLT3 tyrosine kinase inhibitors.
  Expert Opin Investig Drugs, 12, 1951-1962.  
14534577 R.Derynck, and Y.E.Zhang (2003).
Smad-dependent and Smad-independent pathways in TGF-beta family signalling.
  Nature, 425, 577-584.  
14684682 R.E.Harrison, J.A.Flanagan, M.Sankelo, S.A.Abdalla, J.Rowell, R.D.Machado, C.G.Elliott, I.M.Robbins, H.Olschewski, V.McLaughlin, E.Gruenig, F.Kermeen, M.Halme, A.Räisänen-Sokolowski, T.Laitinen, N.W.Morrell, and R.C.Trembath (2003).
Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia.
  J Med Genet, 40, 865-871.  
12626339 T.W.Muir (2003).
Semisynthesis of proteins by expressed protein ligation.
  Annu Rev Biochem, 72, 249-289.  
12809600 Y.Shi, and J.Massagué (2003).
Mechanisms of TGF-beta signaling from cell membrane to the nucleus.
  Cell, 113, 685-700.  
12191475 A.C.Dar, and F.Sicheri (2002).
X-ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition.
  Mol Cell, 10, 295-305.
PDB code: 1luz
12440701 A.Mehra, and J.L.Wrana (2002).
TGF-beta and the Smad signal transduction pathway.
  Biochem Cell Biol, 80, 605-622.  
12154125 B.Y.Qin, S.S.Lam, J.J.Correia, and K.Lin (2002).
Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control.
  Genes Dev, 16, 1950-1963.
PDB codes: 1mjs 1mk2
11818142 D.U.Kloos, C.Choi, and E.Wingender (2002).
The TGF-beta--Smad network: introducing bioinformatic tools.
  Trends Genet, 18, 96.  
11796104 J.L.Wrana (2002).
Phosphoserine-dependent regulation of protein-protein interactions in the Smad pathway.
  Structure, 10, 5-7.  
12191473 L.Xu, Y.Kang, S.Cöl, and J.Massagué (2002).
Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus.
  Mol Cell, 10, 271-282.  
12015977 M.Huse, and J.Kuriyan (2002).
The conformational plasticity of protein kinases.
  Cell, 109, 275-282.  
12323349 R.M.Hofmann, and T.W.Muir (2002).
Recent advances in the application of expressed protein ligation to protein engineering.
  Curr Opin Biotechnol, 13, 297-303.  
12185845 S.Souchelnytskyi, A.Moustakas, and C.H.Heldin (2002).
TGF-beta signaling from a three-dimensional perspective: insight into selection of partners.
  Trends Cell Biol, 12, 304-307.  
11779505 B.Y.Qin, B.M.Chacko, S.S.Lam, M.P.de Caestecker, J.J.Correia, and K.Lin (2001).
Structural basis of Smad1 activation by receptor kinase phosphorylation.
  Mol Cell, 8, 1303-1312.
PDB code: 1khu
11779503 J.W.Wu, M.Hu, J.Chai, J.Seoane, M.Huse, C.Li, D.J.Rigotti, S.Kyin, T.W.Muir, R.Fairman, J.Massagué, and Y.Shi (2001).
Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling.
  Mol Cell, 8, 1277-1289.
PDB code: 1khx
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.