PDBsum entry 1i9d

Go to PDB code: 
protein ligands metals links
Oxidoreductase PDB id
Protein chain
138 a.a. *
SO4 ×3
_CS ×10
Waters ×385
* Residue conservation analysis
PDB id:
Name: Oxidoreductase
Title: Arsenate reductase from e. Coli
Structure: Arsenate reductase. Chain: a. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562
1.65Å     R-factor:   0.134     R-free:   0.203
Authors: P.Martin,B.F.Edwards
Key ref:
P.Martin et al. (2001). Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure, 9, 1071-1081. PubMed id: 11709171 DOI: 10.1016/S0969-2126(01)00672-4
19-Mar-01     Release date:   05-Dec-01    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P08692  (ARSC1_ECOLX) -  Arsenate reductase
141 a.a.
138 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Arsenate reductase (glutaredoxin).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Arsenate + glutaredoxin = arsenite + glutaredoxin disulfide + H2O
+ glutaredoxin
= arsenite
+ glutaredoxin disulfide
+ H(2)O
      Cofactor: Molybdenum
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     oxidation-reduction process   2 terms 
  Biochemical function     oxidoreductase activity     2 terms  


    Added reference    
DOI no: 10.1016/S0969-2126(01)00672-4 Structure 9:1071-1081 (2001)
PubMed id: 11709171  
Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme.
P.Martin, S.DeMel, J.Shi, T.Gladysheva, D.L.Gatti, B.P.Rosen, B.F.Edwards.
BACKGROUND: In Escherichia coli bearing the plasmid R773, resistance to arsenite, arsenate, antimonite, and tellurite is conferred by the arsRDABC plasmid operon that codes for an ATP-dependent anion pump. The product of the arsC gene, arsenate reductase (ArsC), is required to efficiently catalyze the reduction of arsenate to arsenite prior to extrusion. RESULTS: Here, we report the first X-ray crystal structures of ArsC at 1.65 A and of ArsC complexed with arsenate and arsenite at 1.26 A resolution. The overall fold is unique. The native structure shows sulfate and sulfite ions binding in the active site as analogs of arsenate and arsenite. The covalent adduct of arsenate with Cys-12 in the active site of ArsC, which was analyzed in a difference map, shows tetrahedral geometry with a sulfur-arsenic distance of 2.18 A. However, the corresponding adduct with arsenite binds as a hitherto unseen thiarsahydroxy adduct. Finally, the number of bound waters (385) in this highly ordered crystal structure approaches twice the number expected at this resolution for a structure of 138 ordered residues. CONCLUSIONS: Structural information from the adduct of ArsC with its substrate (arsenate) and with its product (arsenite) together with functional information from mutational and biochemical studies on ArsC suggest a plausible mechanism for the reaction. The exceptionally well-defined water structure indicates that this crystal system has precise long-range order within the crystal and that the upper limit for the number of bound waters in crystal structures is underestimated by the structures in the Protein Data Bank.
  Selected figure(s)  
Figure 7.
Figure 7. The Reaction Mechanism of ArsCThe mechanism shown here is consistent with the crystal structures of the arsenate complex (Intermediate I) and the arsenite complex (Intermediate III) of ArsC. Intermediate II and the interaction with glutaredoxin (GrxSH) are inferred from previous biochemical studies (see text)

  The above figure is reprinted by permission from Cell Press: Structure (2001, 9, 1071-1081) copyright 2001.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20960080 C.Yu, B.Xia, and C.Jin (2011).
(1)H, (13)C and (15)N resonance assignments of the arsenate reductase from Synechocystis sp. strain PCC 6803.
  Biomol NMR Assign, 5, 85-87.
PDB codes: 2l17 2l18 2l19
19286650 E.Ordóñez, K.Van Belle, G.Roos, S.De Galan, M.Letek, J.A.Gil, L.Wyns, L.M.Mateos, and J.Messens (2009).
Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange.
  J Biol Chem, 284, 15107-15116.  
19382206 H.K.Yeo, and J.Y.Lee (2009).
Crystal structure of Saccharomyces cerevisiae Ygr203w, a homolog of single-domain rhodanese and Cdc25 phosphatase catalytic domain.
  Proteins, 76, 520-524.
PDB code: 3fs5
19580872 V.Lamour, L.F.Westblade, E.A.Campbell, and S.A.Darst (2009).
Crystal structure of the in vivo-assembled Bacillus subtilis Spx/RNA polymerase alpha subunit C-terminal domain complex.
  J Struct Biol, 168, 352-356.
PDB code: 3gfk
18687074 D.Y.Reyes, and P.Zuber (2008).
Activation of transcription initiation by Spx: formation of transcription complex and identification of a Cis-acting element required for transcriptional activation.
  Mol Microbiol, 69, 765-779.  
17432936 D.Muller, C.Médigue, S.Koechler, V.Barbe, M.Barakat, E.Talla, V.Bonnefoy, E.Krin, F.Arsène-Ploetze, C.Carapito, M.Chandler, B.Cournoyer, S.Cruveiller, C.Dossat, S.Duval, M.Heymann, E.Leize, A.Lieutaud, D.Lièvremont, Y.Makita, S.Mangenot, W.Nitschke, P.Ortet, N.Perdrial, B.Schoepp, P.Siguier, D.D.Simeonova, Z.Rouy, B.Segurens, E.Turlin, D.Vallenet, A.Van Dorsselaer, S.Weiss, J.Weissenbach, M.C.Lett, A.Danchin, and P.N.Bertin (2007).
A tale of two oxidation states: bacterial colonization of arsenic-rich environments.
  PLoS Genet, 3, e53.  
17640068 K.H.Chin, Y.D.Tsai, N.L.Chan, K.F.Huang, A.H.Wang, and S.H.Chou (2007).
The crystal structure of XC1258 from Xanthomonas campestris: a putative procaryotic Nit protein with an arsenic adduct in the active site.
  Proteins, 69, 665-671.
PDB code: 2e11
16570626 G.De la Rosa, J.G.Parsons, A.Martinez-Martinez, J.R.Peralta-Videa, and J.L.Gardea-Torresdey (2006).
Spectroscopic study of the impact of arsenic speciation on arsenic/phosphorus uptake and plant growth in tumbleweed (Salsola kali).
  Environ Sci Technol, 40, 1991-1996.  
16607668 G.Roos, S.Loverix, E.Brosens, K.Van Belle, L.Wyns, P.Geerlings, and J.Messens (2006).
The activation of electrophile, nucleophile and leaving group during the reaction catalysed by pI258 arsenate reductase.
  Chembiochem, 7, 981-989.  
16704340 J.F.Stolz, P.Basu, J.M.Santini, and R.S.Oremland (2006).
Arsenic and selenium in microbial metabolism.
  Annu Rev Microbiol, 60, 107-130.  
15659166 S.Nakano, K.N.Erwin, M.Ralle, and P.Zuber (2005).
Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx.
  Mol Microbiol, 55, 498-510.  
15691908 S.Silver, and L.T.Phung (2005).
Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic.
  Appl Environ Microbiol, 71, 599-608.  
15102337 A.Teplyakov, S.Pullalarevu, G.Obmolova, V.Doseeva, A.Galkin, O.Herzberg, M.Dauter, Z.Dauter, and G.L.Gilliland (2004).
Crystal structure of the YffB protein from Pseudomonas aeruginosa suggests a glutathione-dependent thiol reductase function.
  BMC Struct Biol, 4, 5.
PDB code: 1rw1
15295115 S.DeMel, J.Shi, P.Martin, B.P.Rosen, and B.F.Edwards (2004).
Arginine 60 in the ArsC arsenate reductase of E. coli plasmid R773 determines the chemical nature of the bound As(III) product.
  Protein Sci, 13, 2330-2340.
PDB codes: 1s3c 1s3d 1sd8 1sd9 1sjz 1sk0 1sk1 1sk2
12877744 C.R.Jackson, and S.L.Dugas (2003).
Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase.
  BMC Evol Biol, 3, 18.  
14592722 J.Shi, R.Mukhopadhyay, and B.P.Rosen (2003).
Identification of a triad of arginine residues in the active site of the ArsC arsenate reductase of plasmid R773.
  FEMS Microbiol Lett, 227, 295-301.  
12866046 L.N.Kinch, D.Baker, and N.V.Grishin (2003).
Deciphering a novel thioredoxin-like fold family.
  Proteins, 52, 323-331.  
12682056 N.Lah, J.Lah, I.Zegers, L.Wyns, and J.Messens (2003).
Specific potassium binding stabilizes pI258 arsenate reductase from Staphylococcus aureus.
  J Biol Chem, 278, 24673-24679.  
12777806 P.Retailleau, and T.Prangé (2003).
Phasing power at the K absorption edge of organic arsenic.
  Acta Crystallogr D Biol Crystallogr, 59, 887-896.
PDB code: 1n4f
14617642 R.Li, J.D.Haile, and P.J.Kennelly (2003).
An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics.
  J Bacteriol, 185, 6780-6789.  
12711608 R.Mukhopadhyay, Y.Zhou, and B.P.Rosen (2003).
Directed evolution of a yeast arsenate reductase into a protein-tyrosine phosphatase.
  J Biol Chem, 278, 24476-24480.  
12829274 S.Silver (2003).
Bacterial silver resistance: molecular biology and uses and misuses of silver compounds.
  FEMS Microbiol Rev, 27, 341-353.  
12072565 J.Messens, J.C.Martins, K.Van Belle, E.Brosens, A.Desmyter, M.De Gieter, J.M.Wieruszeski, R.Willem, L.Wyns, and I.Zegers (2002).
All intermediates of the arsenate reductase mechanism, including an intramolecular dynamic disulfide cascade.
  Proc Natl Acad Sci U S A, 99, 8506-8511.
PDB codes: 1ljl 1lju 1lk0
12165430 R.Mukhopadhyay, B.P.Rosen, L.T.Phung, and S.Silver (2002).
Microbial arsenic: from geocycles to genes and enzymes.
  FEMS Microbiol Rev, 26, 311-325.  
  12426124 R.Mukhopadhyay, and B.P.Rosen (2002).
Arsenate reductases in prokaryotes and eukaryotes.
  Environ Health Perspect, 110, 745-748.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.