spacer
spacer

PDBsum entry 1i6p

Go to PDB code: 
protein metals links
Lyase PDB id
1i6p
Jmol
Contents
Protein chain
214 a.a. *
Metals
_ZN
Waters ×62
* Residue conservation analysis
PDB id:
1i6p
Name: Lyase
Title: Crystal structure of e. Coli beta carbonic anhydrase (ecca)
Structure: Carbonic anhydrase. Chain: a. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: yadf. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Biol. unit: Tetramer (from PDB file)
Resolution:
2.00Å     R-factor:   0.176     R-free:   0.202
Authors: J.D.Cronk,J.A.Endrizzi,M.R.Cronk,J.W.O'Neill,K.Y.J.Zhang
Key ref: J.D.Cronk et al. (2001). Crystal structure of E. coli beta-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci, 10, 911-922. PubMed id: 11316870
Date:
02-Mar-01     Release date:   09-May-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P61517  (CAN_ECOLI) -  Carbonic anhydrase 2
Seq:
Struc:
220 a.a.
214 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.4.2.1.1  - Carbonate dehydratase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: H2CO3 = CO2 + H2O
H(2)CO(3)
= CO(2)
+ H(2)O
      Cofactor: Zinc
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytosol   1 term 
  Biological process     metabolic process   2 terms 
  Biochemical function     lyase activity     4 terms  

 

 
    Added reference    
 
 
Protein Sci 10:911-922 (2001)
PubMed id: 11316870  
 
 
Crystal structure of E. coli beta-carbonic anhydrase, an enzyme with an unusual pH-dependent activity.
J.D.Cronk, J.A.Endrizzi, M.R.Cronk, J.W.O'neill, K.Y.Zhang.
 
  ABSTRACT  
 
Carbonic anhydrases fall into three distinct evolutionary and structural classes: alpha, beta, and gamma. The beta-class carbonic anhydrases (beta-CAs) are widely distributed among higher plants, simple eukaryotes, eubacteria, and archaea. We have determined the crystal structure of ECCA, a beta-CA from Escherichia coli, to a resolution of 2.0 A. In agreement with the structure of the beta-CA from the chloroplast of the red alga Porphyridium purpureum, the active-site zinc in ECCA is tetrahedrally coordinated by the side chains of four conserved residues. These results confirm the observation of a unique pattern of zinc ligation in at least some beta-CAS: The absence of a water molecule in the inner coordination sphere is inconsistent with known mechanisms of CA activity. ECCA activity is highly pH-dependent in the physiological range, and its expression in yeast complements an oxygen-sensitive phenotype displayed by a beta-CA-deletion strain. The structural and biochemical characterizations of ECCA presented here and the comparisons with other beta-CA structures suggest that ECCA can adopt two distinct conformations displaying widely divergent catalytic rates.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21298147 F.Pannetier, G.Ohanessian, and G.Frison (2011).
Comparison between α- and β-carbonic anhydrases: can Zn(His)3(H2O) and Zn(His)(Cys)2(H2O) sites lead to equivalent enzymes?
  Dalton Trans, 40, 2696-2698.  
20525828 P.Burghout, L.E.Cron, H.Gradstedt, B.Quintero, E.Simonetti, J.J.Bijlsma, H.J.Bootsma, and P.W.Hermans (2010).
Carbonic anhydrase is essential for Streptococcus pneumoniae growth in environmental ambient air.
  J Bacteriol, 192, 4054-4062.  
19459702 R.S.Rowlett, C.Tu, J.Lee, A.G.Herman, D.A.Chapnick, S.H.Shah, and P.C.Gareiss (2009).
Allosteric site variants of Haemophilus influenzae beta-carbonic anhydrase.
  Biochemistry, 48, 6146-6156.
PDB codes: 3e1v 3e1w 3e24 3e28 3e2a 3e2w
19296112 S.Elleuche, and S.Pöggeler (2009).
Evolution of carbonic anhydrases in fungi.
  Curr Genet, 55, 211-222.  
19365544 S.Elleuche, and S.Pöggeler (2009).
Beta-carbonic anhydrases play a role in fruiting body development and ascospore germination in the filamentous fungus Sordaria macrospora.
  PLoS ONE, 4, e5177.  
19852838 Y.B.Teng, Y.L.Jiang, Y.X.He, W.W.He, F.M.Lian, Y.Chen, and C.Z.Zhou (2009).
Structural insights into the substrate tunnel of Saccharomyces cerevisiae carbonic anhydrase Nce103.
  BMC Struct Biol, 9, 67.
PDB code: 3eyx
19012038 S.Morishita, I.Nishimori, T.Minakuchi, S.Onishi, H.Takeuchi, T.Sugiura, D.Vullo, A.Scozzafava, and C.T.Supuran (2008).
Cloning, polymorphism, and inhibition of beta-carbonic anhydrase of Helicobacter pylori.
  J Gastroenterol, 43, 849-857.  
18335973 V.M.Krishnamurthy, G.K.Kaufman, A.R.Urbach, I.Gitlin, K.L.Gudiksen, D.B.Weibel, and G.M.Whitesides (2008).
Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding.
  Chem Rev, 108, 946.  
17222138 H.Park, B.Song, and F.M.Morel (2007).
Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters.
  Environ Microbiol, 9, 403-413.  
16863473 B.W.Clare, and C.T.Supuran (2006).
A perspective on quantitative structure-activity relationships and carbonic anhydrase inhibitors.
  Expert Opin Drug Metab Toxicol, 2, 113-137.  
16400172 E.G.Mogensen, G.Janbon, J.Chaloupka, C.Steegborn, M.S.Fu, F.Moyrand, T.Klengel, D.S.Pearson, M.A.Geeves, J.Buck, L.R.Levin, and F.A.Mühlschlegel (2006).
Cryptococcus neoformans senses CO2 through the carbonic anhydrase Can2 and the adenylyl cyclase Cac1.
  Eukaryot Cell, 5, 103-111.  
15502869 L.I.Leichert, and U.Jakob (2004).
Protein thiol modifications visualized in vivo.
  PLoS Biol, 2, e333.  
14563877 C.Merlin, M.Masters, S.McAteer, and A.Coulson (2003).
Why is carbonic anhydrase essential to Escherichia coli?
  J Bacteriol, 185, 6415-6424.  
12784642 M.Hashimoto, and J.Kato (2003).
Indispensability of the Escherichia coli carbonic anhydrases YadF and CynT in cell proliferation at a low CO2 partial pressure.
  Biosci Biotechnol Biochem, 67, 919-922.  
12193617 B.Kusian, D.Sültemeyer, and B.Bowien (2002).
Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO(2) concentrations.
  J Bacteriol, 184, 5018-5026.  
12107142 K.S.Smith, C.Ingram-Smith, and J.G.Ferry (2002).
Roles of the conserved aspartate and arginine in the catalytic mechanism of an archaeal beta-class carbonic anhydrase.
  J Bacteriol, 184, 4240-4245.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.