spacer
spacer

PDBsum entry 1hv8

Go to PDB code: 
protein ligands Protein-protein interface(s) links
RNA binding protein PDB id
1hv8

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
363 a.a. *
Ligands
SO4 ×6
* Residue conservation analysis
PDB id:
1hv8
Name: RNA binding protein
Title: Crystal structure of a dead box protein from the hyperthermophile methanococcus jannaschii
Structure: Putative atp-dependent RNA helicase mj0669. Chain: a, b. Synonym: dead box helicase. Engineered: yes
Source: Methanocaldococcus jannaschii. Organism_taxid: 2190. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
3.00Å     R-factor:   0.270     R-free:   0.316
Authors: R.M.Story,H.Li,J.N.Abelson
Key ref:
R.M.Story et al. (2001). Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc Natl Acad Sci U S A, 98, 1465-1470. PubMed id: 11171974 DOI: 10.1073/pnas.98.4.1465
Date:
08-Jan-01     Release date:   21-Feb-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Q58083  (H669_METJA) -  Probable ATP-dependent RNA helicase MJ0669 from Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440)
Seq:
Struc:
367 a.a.
363 a.a.
Key:    Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.98.4.1465 Proc Natl Acad Sci U S A 98:1465-1470 (2001)
PubMed id: 11171974  
 
 
Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii.
R.M.Story, H.Li, J.N.Abelson.
 
  ABSTRACT  
 
We have determined the structure of a DEAD box putative RNA helicase from the hyperthermophile Methanococcus jannaschii. Like other helicases, the protein contains two alpha/beta domains, each with a recA-like topology. Unlike other helicases, the protein exists as a dimer in the crystal. Through an interaction that resembles the dimer interface of insulin, the amino-terminal domain's 7-strand beta-sheet is extended to 14 strands across the two molecules. Motifs conserved in the DEAD box family cluster in the cleft between domains, and many of their functions can be deduced by mutational data and by comparison with other helicase structures. Several lines of evidence suggest that motif III Ser-Ala-Thr may be involved in binding RNA.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Monomer structure. (A) The MjDEAD monomer showing the amino- and carboxyl-terminal domains (labeled N and C in subsequent figures). The linker between the domains can be seen in the middle of the figure. The orientation of the dimer in this view (in this and subsequent figures) is depicted in an Inset, with the equivalent domains colored blue, as in the main figure. Fig. 1A, as well as Fig. 1C, Fig. 2 A and B, and Fig. 3 A and C were made with MOLSCRIPT (41) and RASTER 3D (42). (B) The topological organization of the MjDEAD monomer, illustrating the similarities of the two domains. The "RecA-like core" stretches from -strands 1 and 2 and 4-7 as numbered for the amino-terminal domain and their connecting -helices. Sequence numbers at the edges of secondary structure elements are indicated, as are those loop regions observed to bind the nucleic acid backbone in some or all of known helicase complexes with nucleic acid. The region of polypeptide equivalent to the GG motif (motif 1B) also contacts nucleic acid in the HCV NS3 helicase. -Helix F and -strand no. 7 (that pack against their symmetry-related counterparts to form a dimer) are indicated. (C) Difference in the amino- and carboxyl-terminal domain orientation relative to other proteins. Superposition of only the amino-terminal domain with that of other proteins reveals a structure "opened up" relative to the others (blue domains). Independent superposition of the carboxyl-terminal domain on a "closed" structure (in this case the PcrA DNA and AMPPNP structure) leads to a closing of the MjDEAD structure to a conformation more like that observed for other helicases (blue amino-terminal domain and gold carboxyl-terminal domain). Single-stranded (ss)DNA binds at the top of the two domains in other helicases in this orientation. We assume that this closed structure for MjDEAD will likewise resemble the structure of the DNA/ATP bound form of this enzyme.
Figure 2.
Fig. 2. Dimer Structure. (A) Structure of the MjDEAD dimer found in the asymmetric unit in the crystal with the molecules related by an approximate 2-fold symmetry axis. The individual monomers are shown in blue and green. Two equivalent -strands (no. 7) are hydrogen bonded, effectively extending the -sheet to 14 strands. (B) Closeup of the dimer interface of MjDEAD and its superposition with the B:D interface of insulin (PDB code 1trz). Each interface is created by a similar interaction across a roughly 2-fold symmetry axis of two -helices and two hydrogen-bonded -strands, depicted as coils and arrows. Insulin is colored yellow with red side chains, and MjDEAD is colored cyan with blue side chains. The arrangement of equivalent aromatic residues on the -strands (YsF for MjDEAD, FfY for insulin) is shown.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21428949 D.Klostermeier (2011).
Single-molecule FRET reveals nucleotide-driven conformational changes in molecular machines and their link to RNA unwinding and DNA supercoiling.
  Biochem Soc Trans, 39, 611-616.  
20382767 A.Taghbalout, and Q.Yang (2010).
Self-assembly of the bacterial cytoskeleton-associated RNA helicase B protein into polymeric filamentous structures.
  J Bacteriol, 192, 3222-3226.  
20339440 E.R.Yassin, A.M.Abdul-Nabi, A.Takeda, and N.R.Yaseen (2010).
Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: role of a conserved helicase motif.
  Leukemia, 24, 1001-1011.  
19050012 D.Klostermeier, and M.G.Rudolph (2009).
A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility.
  Nucleic Acids Res, 37, 421-430.
PDB codes: 3eaq 3ear 3eas
19208808 J.Napetschnig, S.A.Kassube, E.W.Debler, R.W.Wong, G.Blobel, and A.Hoelz (2009).
Structural and functional analysis of the interaction between the nucleoporin Nup214 and the DEAD-box helicase Ddx19.
  Proc Natl Acad Sci U S A, 106, 3089-3094.
PDB codes: 3fmo 3fmp
19710183 M.G.Rudolph, and D.Klostermeier (2009).
The Thermus thermophilus DEAD box helicase Hera contains a modified RNA recognition motif domain loosely connected to the helicase core.
  RNA, 15, 1993-2001.
PDB codes: 3i31 3i32
  19255475 M.G.Rudolph, J.G.Wittmann, and D.Klostermeier (2009).
Crystallization and preliminary characterization of the Thermus thermophilus RNA helicase Hera C-terminal domain.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 65, 248-252.  
19747077 M.Hilbert, A.R.Karow, and D.Klostermeier (2009).
The mechanism of ATP-dependent RNA unwinding by DEAD box proteins.
  Biol Chem, 390, 1237-1250.  
19002498 M.Singh, K.K.Srivastava, and S.M.Bhattacharya (2009).
Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi.
  Parasitol Res, 104, 753-761.  
19322199 S.Chimnaronk, T.Suzuki, T.Manita, Y.Ikeuchi, M.Yao, T.Suzuki, and I.Tanaka (2009).
RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon.
  EMBO J, 28, 1362-1373.
PDB code: 2zpa
19589129 S.H.Ling, Z.Cheng, and H.Song (2009).
Structural aspects of RNA helicases in eukaryotic mRNA decay.
  Biosci Rep, 29, 339-349.  
18184816 B.Theissen, A.R.Karow, J.Köhler, A.Gubaev, and D.Klostermeier (2008).
Cooperative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicase.
  Proc Natl Acad Sci U S A, 105, 548-553.  
18971330 D.Sarkar, R.Desalle, and P.B.Fisher (2008).
Evolution of MDA-5/RIG-I-dependent innate immunity: independent evolution by domain grafting.
  Proc Natl Acad Sci U S A, 105, 17040-17045.  
18164611 H.Le Hir, and G.R.Andersen (2008).
Structural insights into the exon junction complex.
  Curr Opin Struct Biol, 18, 112-119.  
18782831 M.H.Linden, R.K.Hartmann, and D.Klostermeier (2008).
The putative RNase P motif in the DEAD box helicase Hera is dispensable for efficient interaction with RNA and helicase activity.
  Nucleic Acids Res, 36, 5800-5811.  
18606994 P.Schütz, M.Bumann, A.E.Oberholzer, C.Bieniossek, H.Trachsel, M.Altmann, and U.Baumann (2008).
Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions.
  Proc Natl Acad Sci U S A, 105, 9564-9569.
PDB codes: 2vso 2vsx
18042682 X.Zhang, T.Nakashima, Y.Kakuta, M.Yao, I.Tanaka, and M.Kimura (2008).
Crystal structure of an archaeal Ski2p-like protein from Pyrococcus horikoshii OT3.
  Protein Sci, 17, 136-145.
PDB code: 2z41
17229151 A.R.Karow, B.Theissen, and D.Klostermeier (2007).
Authentic interdomain communication in an RNA helicase reconstituted by expressed protein ligation of two helicase domains.
  FEBS J, 274, 463-473.  
  17401195 B.Rodamilans, and G.Montoya (2007).
Expression, purification, crystallization and preliminary X-ray diffraction analysis of the DDX3 RNA helicase domain.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 283-286.
PDB code: 2jgn
17574830 E.Jankowsky, and M.E.Fairman (2007).
RNA helicases--one fold for many functions.
  Curr Opin Struct Biol, 17, 316-324.  
18423102 E.Nurmemmedov, M.Castelnovo, C.E.Catalano, and A.Evilevitch (2007).
Biophysics of viral infectivity: matching genome length with capsid size.
  Q Rev Biophys, 40, 327-356.  
17870092 M.E.Ortega, H.Gaussier, and C.E.Catalano (2007).
The DNA maturation domain of gpA, the DNA packaging motor protein of bacteriophage lambda, contains an ATPase site associated with endonuclease activity.
  J Mol Biol, 373, 851-865.  
16783375 D.Keramisanou, N.Biris, I.Gelis, G.Sianidis, S.Karamanou, A.Economou, and C.G.Kalodimos (2006).
Disorder-order folding transitions underlie catalysis in the helicase motor of SecA.
  Nat Struct Mol Biol, 13, 594-602.  
  17142894 J.M.Caruthers, Y.Hu, and D.B.McKay (2006).
Structure of the second domain of the Bacillus subtilis DEAD-box RNA helicase YxiN.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 1191-1195.
PDB code: 2hjv
16826229 L.F.Cavanaugh, A.G.Palmer, L.M.Gierasch, and J.F.Hunt (2006).
Disorder breathes life into a DEAD motor.
  Nat Struct Mol Biol, 13, 566-569.  
16532013 M.E.Bordeleau, A.Mori, M.Oberer, L.Lindqvist, L.S.Chard, T.Higa, G.J.Belsham, G.Wagner, J.Tanaka, and J.Pelletier (2006).
Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A.
  Nat Chem Biol, 2, 213-220.  
16630807 P.Linder, and P.Lasko (2006).
Bent out of shape: RNA unwinding by the DEAD-box helicase Vasa.
  Cell, 125, 219-221.  
16687655 R.Dhalia, N.Marinsek, C.R.Reis, R.Katz, J.R.Muniz, N.Standart, M.Carrington, and O.P.de Melo Neto (2006).
The two eIF4A helicases in Trypanosoma brucei are functionally distinct.
  Nucleic Acids Res, 34, 2495-2507.  
16611943 S.Wang, Y.Hu, M.T.Overgaard, F.V.Karginov, O.C.Uhlenbeck, and D.B.McKay (2006).
The domain of the Bacillus subtilis DEAD-box helicase YxiN that is responsible for specific binding of 23S rRNA has an RNA recognition motif fold.
  RNA, 12, 959-967.
PDB code: 2g0c
16611246 T.Matsui, K.Hogetsu, J.Usukura, T.Sato, T.Kumasaka, Y.Akao, and N.Tanaka (2006).
Structural insight of human DEAD-box protein rck/p54 into its substrate recognition with conformational changes.
  Genes Cells, 11, 439-452.
PDB code: 1vec
16630817 T.Sengoku, O.Nureki, A.Nakamura, S.Kobayashi, and S.Yokoyama (2006).
Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa.
  Cell, 125, 287-300.
PDB code: 2db3
15892698 B.B.Boonyaratanakornkit, A.J.Simpson, T.A.Whitehead, C.M.Fraser, N.M.El-Sayed, and D.S.Clark (2005).
Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock.
  Environ Microbiol, 7, 789-797.  
16166382 M.Oberer, A.Marintchev, and G.Wagner (2005).
Structural basis for the enhancement of eIF4A helicase activity by eIF4G.
  Genes Dev, 19, 2212-2223.  
15806108 N.H.Thomä, B.K.Czyzewski, A.A.Alexeev, A.V.Mazin, S.C.Kowalczykowski, and N.P.Pavletich (2005).
Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54.
  Nat Struct Mol Biol, 12, 350-356.
PDB code: 1z3i
15718299 S.Rocak, B.Emery, N.K.Tanner, and P.Linder (2005).
Characterization of the ATPase and unwinding activities of the yeast DEAD-box protein Has1p and the analysis of the roles of the conserved motifs.
  Nucleic Acids Res, 33, 999.  
15987810 Z.Cheng, J.Coller, R.Parker, and H.Song (2005).
Crystal structure and functional analysis of DEAD-box protein Dhh1p.
  RNA, 11, 1258-1270.
PDB code: 1s2m
14681586 A.B.Carmel, and B.W.Matthews (2004).
Crystal structure of the BstDEAD N-terminal domain: a novel DEAD protein from Bacillus stearothermophilus.
  RNA, 10, 66-74.
PDB code: 1q0u
15062081 E.A.Sickmier, K.N.Kreuzer, and S.W.White (2004).
The crystal structure of the UvsW helicase from bacteriophage T4.
  Structure, 12, 583-592.
PDB code: 1rif
15272299 E.Papanikou, S.Karamanou, C.Baud, G.Sianidis, M.Frank, and A.Economou (2004).
Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase.
  EMBO Rep, 5, 807-811.  
15585580 H.Shi, O.Cordin, C.M.Minder, P.Linder, and R.M.Xu (2004).
Crystal structure of the human ATP-dependent splicing and export factor UAP56.
  Proc Natl Acad Sci U S A, 101, 17628-17633.
PDB codes: 1xti 1xtj 1xtk
14997559 K.L.Sim, and T.P.Creamer (2004).
Protein simple sequence conservation.
  Proteins, 54, 629-638.  
15201868 O.Cordin, N.K.Tanner, M.Doère, P.Linder, and J.Banroques (2004).
The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity.
  EMBO J, 23, 2478-2487.  
15296731 R.Zhao, J.Shen, M.R.Green, M.MacMorris, and T.Blumenthal (2004).
Crystal structure of UAP56, a DExD/H-box protein involved in pre-mRNA splicing and mRNA export.
  Structure, 12, 1373-1381.
PDB codes: 1t5i 1t6n
14991003 S.Rocak, and P.Linder (2004).
DEAD-box proteins: the driving forces behind RNA metabolism.
  Nat Rev Mol Cell Biol, 5, 232-241.  
14747711 T.Sengoku, O.Nureki, N.Dohmae, A.Nakamura, and S.Yokoyama (2004).
Crystallization and preliminary X-ray analysis of the helicase domains of Vasa complexed with RNA and an ATP analogue.
  Acta Crystallogr D Biol Crystallogr, 60, 320-322.  
14501141 A.B.Carmel, and B.W.Matthews (2003).
Purification, crystallization and preliminary X-ray analysis of the novel DEAD protein BstDEAD from Bacillus stearothermophilus.
  Acta Crystallogr D Biol Crystallogr, 59, 1869-1870.  
12649492 A.Oguro, T.Ohtsu, Y.V.Svitkin, N.Sonenberg, and Y.Nakamura (2003).
RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis.
  RNA, 9, 394-407.  
14517231 D.A.Bernstein, M.C.Zittel, and J.L.Keck (2003).
High-resolution structure of the E.coli RecQ helicase catalytic core.
  EMBO J, 22, 4910-4921.
PDB codes: 1oyw 1oyy
14627736 D.Liu, W.T.Windsor, and D.F.Wyss (2003).
Double-stranded DNA-induced localized unfolding of HCV NS3 helicase subdomain 2.
  Protein Sci, 12, 2757-2767.  
12595555 V.C.Ogilvie, B.J.Wilson, S.M.Nicol, N.A.Morrice, L.R.Saunders, G.N.Barber, and F.V.Fuller-Pace (2003).
The highly related DEAD box RNA helicases p68 and p72 exist as heterodimers in cells.
  Nucleic Acids Res, 31, 1470-1480.  
11839499 J.M.Caruthers, and D.B.McKay (2002).
Helicase structure and mechanism.
  Curr Opin Struct Biol, 12, 123-133.  
12209000 M.C.Ganoza, M.C.Kiel, and H.Aoki (2002).
Evolutionary conservation of reactions in translation.
  Microbiol Mol Biol Rev, 66, 460.  
11889086 M.R.Singleton, and D.B.Wigley (2002).
Modularity and specialization in superfamily 1 and 2 helicases.
  J Bacteriol, 184, 1819-1826.  
12235385 M.S.Mitchell, S.Matsuzaki, S.Imai, and V.B.Rao (2002).
Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases.
  Nucleic Acids Res, 30, 4009-4021.  
11350034 C.A.Tsu, K.Kossen, and O.C.Uhlenbeck (2001).
The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA.
  RNA, 7, 702-709.  
11574482 C.M.Diges, and O.C.Uhlenbeck (2001).
Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA.
  EMBO J, 20, 5503-5512.  
11526322 I.D.Kerr, R.I.Wadsworth, W.Blankenfeldt, A.G.Staines, M.F.White, and J.H.Naismith (2001).
Overexpression, purification, crystallization and data collection of a single-stranded DNA-binding protein from Sulfolobus solfataricus.
  Acta Crystallogr D Biol Crystallogr, 57, 1290-1292.  
11595187 M.R.Singleton, S.Scaife, and D.B.Wigley (2001).
Structural analysis of DNA replication fork reversal by RecG.
  Cell, 107, 79-89.
PDB code: 1gm5
11545728 N.K.Tanner, and P.Linder (2001).
DExD/H box RNA helicases: from generic motors to specific dissociation functions.
  Mol Cell, 8, 251-262.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer