spacer
spacer

PDBsum entry 1h54

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
1h54
Jmol
Contents
Protein chains
753 a.a. *
Ligands
PO4
Metals
__K ×2
Waters ×1592
* Residue conservation analysis
PDB id:
1h54
Name: Hydrolase
Title: Maltose phosphorylase from lactobacillus brevis
Structure: Maltose phosphorylase. Chain: a, b. Ec: 2.4.1.8
Source: Lactobacillus brevis. Organism_taxid: 1580
Biol. unit: Dimer (from PDB file)
Resolution:
2.15Å     R-factor:   0.186     R-free:   0.225
Authors: H.Van Tilbeurgh,M.-P.Egloff
Key ref:
M.P.Egloff et al. (2001). Crystal structure of maltose phosphorylase from Lactobacillus brevis: unexpected evolutionary relationship with glucoamylases. Structure, 9, 689-697. PubMed id: 11587643 DOI: 10.1016/S0969-2126(01)00626-8
Date:
18-May-01     Release date:   05-Sep-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q7SIE1  (Q7SIE1_LACBR) -  Hydrolase
Seq:
Struc:
 
Seq:
Struc:
754 a.a.
753 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     carbohydrate metabolic process   1 term 
  Biochemical function     catalytic activity     3 terms  

 

 
DOI no: 10.1016/S0969-2126(01)00626-8 Structure 9:689-697 (2001)
PubMed id: 11587643  
 
 
Crystal structure of maltose phosphorylase from Lactobacillus brevis: unexpected evolutionary relationship with glucoamylases.
M.P.Egloff, J.Uppenberg, L.Haalck, H.van Tilbeurgh.
 
  ABSTRACT  
 
BACKGROUND: Maltose phosphorylase (MP) is a dimeric enzyme that catalyzes the conversion of maltose and inorganic phosphate into beta-D-glucose-1-phosphate and glucose without requiring any cofactors, such as pyridoxal phosphate. The enzyme is part of operons that are involved in maltose/malto-oligosaccharide metabolism. Maltose phosphorylases have been classified in family 65 of the glycoside hydrolases. No structure is available for any member of this family. RESULTS: We report here the 2.15 A resolution crystal structure of the MP from Lactobacillus brevis in complex with the cosubstrate phosphate. This represents the first structure of a disaccharide phosphorylase. The structure consists of an N-terminal complex beta sandwich domain, a helical linker, an (alpha/alpha)6 barrel catalytic domain, and a C-terminal beta sheet domain. The (alpha/alpha)6 barrel has an unexpected strong structural and functional analogy with the catalytic domain of glucoamylase from Aspergillus awamori. The only conserved glutamate of MP (Glu487) superposes onto the catalytic residue Glu179 of glucoamylase and likely represents the general acid catalyst. The phosphate ion is bound in a pocket facing the carboxylate of Glu487 and is ideally positioned for nucleophilic attack of the anomeric carbon atom. This site is occupied by the catalytic base carboxylate in glucoamylase. CONCLUSIONS: These observations strongly suggest that maltose phosphorylase has evolved from glucoamylase. MP has probably conserved one carboxylate group for acid catalysis and has exchanged the catalytic base for a phosphate binding pocket. The relative positions of the acid catalytic group and the bound phosphate are compatible with a direct-attack mechanism of a glycosidic bond by phosphate, in accordance with inversion of configuration at the anomeric carbon as observed for this enzyme.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Topology diagram of Lb-MPTopology diagram of the Lb-Mp structure. The two sheets of the N-terminal b domain are in light and deep blue, the linker region is in turquoise, the catalytic (a/a)[6] barrel is in yellow, and the C-terminal domain is in red

 
  The above figure is reprinted by permission from Cell Press: Structure (2001, 9, 689-697) copyright 2001.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21154671 C.Luley-Goedl, and B.Nidetzky (2010).
Carbohydrate synthesis by disaccharide phosphorylases: reactions, catalytic mechanisms and application in the glycosciences.
  Biotechnol J, 5, 1324-1338.  
20552664 T.V.Vuong, and D.B.Wilson (2010).
Glycoside hydrolases: catalytic base/nucleophile diversity.
  Biotechnol Bioeng, 107, 195-205.  
18093969 D.C.Oliver, and M.Paetzel (2008).
Crystal structure of the major periplasmic domain of the bacterial membrane protein assembly facilitator YidC.
  J Biol Chem, 283, 5208-5216.
PDB code: 3blc
18256495 K.Murata, S.Kawai, B.Mikami, and W.Hashimoto (2008).
Superchannel of bacteria: biological significance and new horizons.
  Biosci Biotechnol Biochem, 72, 265-277.  
17459873 M.Nagae, A.Tsuchiya, T.Katayama, K.Yamamoto, S.Wakatsuki, and R.Kato (2007).
Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum.
  J Biol Chem, 282, 18497-18509.
PDB codes: 2eab 2eac 2ead 2eae
17587697 M.Nishimoto, and M.Kitaoka (2007).
Identification of the putative proton donor residue of lacto-N-biose phosphorylase (EC 2.4.1.211).
  Biosci Biotechnol Biochem, 71, 1587-1591.  
  16511025 K.Ichikawa, T.Tonozuka, M.Mizuno, Y.Tanabe, S.Kamitori, A.Nishikawa, and Y.Sakano (2005).
Crystallization and preliminary X-ray analysis of Thermoactinomyces vulgaris R-47 maltooligosaccharide-metabolizing enzyme homologous to glucoamylase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 302-304.  
15652973 T.Collins, C.Gerday, and G.Feller (2005).
Xylanases, xylanase families and extremophilic xylanases.
  FEMS Microbiol Rev, 29, 3.  
16198267 T.Yamamoto, K.Mukai, H.Yamashita, M.Kubota, S.Fukuda, M.Kurimoto, and Y.Tsujisaka (2005).
Enhancement of thermostability of kojibiose phosphorylase from Thermoanaerobacter brockii ATCC35047 by random mutagenesis.
  J Biosci Bioeng, 100, 212-215.  
15849405 W.Hashimoto, K.Momma, Y.Maruyama, M.Yamasaki, B.Mikami, and K.Murata (2005).
Structure and function of bacterial super-biosystem responsible for import and depolymerization of macromolecules.
  Biosci Biotechnol Biochem, 69, 673-692.  
15752325 Y.Le Breton, V.Pichereau, N.Sauvageot, Y.Auffray, and A.Rincé (2005).
Maltose utilization in Enterococcus faecalis.
  J Appl Microbiol, 98, 806-813.  
15274915 M.Hidaka, Y.Honda, M.Kitaoka, S.Nirasawa, K.Hayashi, T.Wakagi, H.Shoun, and S.Fushinobu (2004).
Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (alpha/alpha)(6) barrel fold.
  Structure, 12, 937-947.
PDB codes: 1v7v 1v7w 1v7x
15148314 T.Itoh, S.Akao, W.Hashimoto, B.Mikami, and K.Murata (2004).
Crystal structure of unsaturated glucuronyl hydrolase, responsible for the degradation of glycosaminoglycan, from Bacillus sp. GL1 at 1.8 A resolution.
  J Biol Chem, 279, 31804-31812.
PDB code: 1vd5
  16233673 T.Yamamoto, K.Maruta, K.Mukai, H.Yamashita, T.Nishimoto, M.Kubota, S.Fukuda, M.Kurimoto, and Y.Tsujisaka (2004).
Cloning and sequencing of kojibiose phosphorylase gene from Thermoanaerobacter brockii ATCC35047.
  J Biosci Bioeng, 98, 99.  
  16233728 W.Hashimoto, M.Yamasaki, T.Itoh, K.Momma, B.Mikami, and K.Murata (2004).
Super-channel in bacteria: structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules.
  J Biosci Bioeng, 98, 399-413.  
15252058 Y.Pedreño, S.Maicas, J.C.Argüelles, R.Sentandreu, and E.Valentin (2004).
The ATC1 gene encodes a cell wall-linked acid trehalase required for growth on trehalose in Candida albicans.
  J Biol Chem, 279, 40852-40860.  
12923184 H.M.Holden, I.Rayment, and J.B.Thoden (2003).
Structure and function of enzymes of the Leloir pathway for galactose metabolism.
  J Biol Chem, 278, 43885-43888.  
12717027 J.B.Thoden, J.Kim, F.M.Raushel, and H.M.Holden (2003).
The catalytic mechanism of galactose mutarotase.
  Protein Sci, 12, 1051-1059.
PDB codes: 1ns0 1ns2 1ns4 1ns7 1ns8 1nsm 1nsr 1nss 1nsu 1nsv 1nsx 1nsz
12475987 W.Hashimoto, H.Nankai, B.Mikami, and K.Murata (2003).
Crystal structure of Bacillus sp. GL1 xanthan lyase, which acts on the side chains of xanthan.
  J Biol Chem, 278, 7663-7673.
PDB codes: 1j0m 1j0n
12413546 A.Vasella, G.J.Davies, and M.Böhm (2002).
Glycosidase mechanisms.
  Curr Opin Chem Biol, 6, 619-629.  
11907040 J.B.Thoden, and H.M.Holden (2002).
High resolution X-ray structure of galactose mutarotase from Lactococcus lactis.
  J Biol Chem, 277, 20854-20861.
PDB codes: 1l7j 1l7k
12218067 J.B.Thoden, J.Kim, F.M.Raushel, and H.M.Holden (2002).
Structural and kinetic studies of sugar binding to galactose mutarotase from Lactococcus lactis.
  J Biol Chem, 277, 45458-45465.
PDB codes: 1mmu 1mmx 1mmy 1mmz 1mn0
12400703 K.Maruta, K.Mukai, H.Yamashita, M.Kubota, H.Chaen, S.Fukuda, and M.Kurimoto (2002).
Gene encoding a trehalose phosphorylase from Thermoanaerobacter brockii ATCC 35047.
  Biosci Biotechnol Biochem, 66, 1976-1980.  
12400680 Y.Inoue, K.Ishii, T.Tomita, T.Yatake, and F.Fukui (2002).
Characterization of trehalose phosphorylase from Bacillus stearothermophilus SK-1 and nucleotide sequence of the corresponding gene.
  Biosci Biotechnol Biochem, 66, 1835-1843.  
12596853 Y.Inoue, N.Yasutake, Y.Oshima, Y.Yamamoto, T.Tomita, S.Miyoshi, and T.Yatake (2002).
Cloning of the maltose phosphorylase gene from Bacillus sp. strain RK-1 and efficient production of the cloned gene and the trehalose phosphorylase gene from Bacillus stearothermophilus SK-1 in Bacillus subtilis.
  Biosci Biotechnol Biochem, 66, 2594-2599.  
11785761 Y.Bourne, and B.Henrissat (2001).
Glycoside hydrolases and glycosyltransferases: families and functional modules.
  Curr Opin Struct Biol, 11, 593-600.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.