PDBsum entry 1h4k

Go to PDB code: 
protein ligands links
Transferase PDB id
Protein chain
271 a.a. *
SO4 ×2
EDO ×2
Waters ×196
* Residue conservation analysis
PDB id:
Name: Transferase
Title: Sulfurtransferase from azotobacter vinelandii in complex with hypophosphite
Structure: Sulfurtransferase. Chain: x. Synonym: rhodanese-like protein. Engineered: yes
Source: Azotobacter vinelandii. Organism_taxid: 354. Cellular_location: cytoplasm. Gene: rhda. Expressed in: escherichia coli m15. Expression_system_taxid: 1007065. Expression_system_variant: pre4. Other_details: synthetic gene
2.05Å     R-factor:   0.210     R-free:   0.240
Authors: D.Bordo,F.Forlani,A.Spallarossa,R.Colnaghi,A.Carpen, S.Pagani,M.Bolognesi
Key ref: D.Bordo et al. (2001). A persulfurated cysteine promotes active site reactivity in Azotobacter vinelandii Rhodanese. Biol Chem, 382, 1245-1252. PubMed id: 11592406
11-May-01     Release date:   16-May-02    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P52197  (THTR_AZOVI) -  Thiosulfate sulfurtransferase
271 a.a.
271 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Thiosulfate sulfurtransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thiosulfate + cyanide = sulfite + thiocyanate
+ cyanide
Bound ligand (Het Group name = SO4)
matches with 80.00% similarity
+ thiocyanate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     metabolic process   1 term 
  Biochemical function     protein binding     3 terms  


Biol Chem 382:1245-1252 (2001)
PubMed id: 11592406  
A persulfurated cysteine promotes active site reactivity in Azotobacter vinelandii Rhodanese.
D.Bordo, F.Forlani, A.Spallarossa, R.Colnaghi, A.Carpen, M.Bolognesi, S.Pagani.
Active site reactivity and specificity of RhdA, a thiosulfate:cyanide sulfurtransferase (rhodanese) from Azotobacter vinelandii, have been investigated through ligand binding, site-directed mutagenesis, and X-ray crystallographic techniques, in a combined approach. In native RhdA the active site Cys230 is found persulfurated; fluorescence and sulfurtransferase activity measurements show that phosphate anions interact with Cys230 persulfide sulfur atom and modulate activity. Crystallographic analyses confirm that phosphate and hypophosphite anions react with native RhdA, removing the persulfide sulfur atom from the active site pocket. Considering that RhdA and the catalytic subunit of Cdc25 phosphatases share a common three-dimensional fold as well as active site Cys (catalytic) and Arg residues, two RhdA mutants carrying a single amino acid insertion at the active site loop were designed and their phosphatase activity tested. The crystallographic and functional results reported here show that specific sulfurtransferase or phosphatase activities are strictly related to precise tailoring of the catalytic loop structure in RhdA and Cdc25 phosphatase, respectively.

Literature references that cite this PDB file's key reference

  PubMed id Reference
20213443 F.Cartini, W.Remelli, P.C.Dos Santos, J.Papenbrock, S.Pagani, and F.Forlani (2011).
Mobilization of sulfane sulfur from cysteine desulfurases to the Azotobacter vinelandii sulfurtransferase RhdA.
  Amino Acids, 41, 141-150.  
21583801 C.X.Ren, S.Y.Li, Z.Z.Yin, X.Lu, and Y.Q.Ding (2009).
  Acta Crystallogr Sect E Struct Rep Online, 65, m572-m573.  
19798741 P.Hänzelmann, J.U.Dahl, J.Kuper, A.Urban, U.Müller-Theissen, S.Leimkühler, and H.Schindelin (2009).
Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains.
  Protein Sci, 18, 2480-2491.
PDB codes: 3ipo 3ipp
21577391 S.M.Shang, C.X.Ren, X.Wang, L.D.Lu, and X.J.Yang (2009).
Bis[2,6-bis-(4,5-dihydro-1H-imidazol-2-yl)pyridine]manganese(II) bis-(per-chlorate) acetonitrile solvate.
  Acta Crystallogr Sect E Struct Rep Online, 65, m1023-m1024.  
  19088907 H.Cheng, J.L.Donahue, S.E.Battle, W.K.Ray, and T.J.Larson (2008).
Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli.
  Open Microbiol J, 2, 18-28.  
17109059 L.Cavalca, N.Guerrieri, M.Colombo, S.Pagani, and V.Andreoni (2007).
Enzymatic and genetic profiles in environmental strains grown on polycyclic aromatic hydrocarbons.
  Antonie Van Leeuwenhoek, 91, 315-325.  
17697123 M.C.Giuliani, P.Tron, G.Leroy, C.Aubert, P.Tauc, and M.T.Giudici-Orticoni (2007).
A new sulfurtransferase from the hyperthermophilic bacterium Aquifex aeolicus. Being single is not so simple when temperature gets high.
  FEBS J, 274, 4572-4587.  
  17012788 D.Bisacchi, Y.Zhou, B.P.Rosen, R.Mukhopadhyay, and D.Bordo (2006).
Crystallization and preliminary crystallographic characterization of LmACR2, an arsenate/antimonate reductase from Leishmania major.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 976-979.  
15534230 T.Tamura, S.Yamamoto, M.Takahata, H.Sakaguchi, H.Tanaka, T.C.Stadtman, and K.Inagaki (2004).
Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation.
  Proc Natl Acad Sci U S A, 101, 16162-16167.  
14669990 A.Cereda, F.Forlani, S.Iametti, R.Bernhardt, P.Ferranti, G.Picariello, S.Pagani, and F.Bonomi (2003).
Molecular recognition between Azotobacter vinelandii rhodanese and a sulfur acceptor protein.
  Biol Chem, 384, 1473-1481.  
14519133 S.Melino, D.O.Cicero, M.Orsale, F.Forlani, S.Pagani, and M.Paci (2003).
Azotobacter vinelandii rhodanese: selenium loading and ion interaction studies.
  Eur J Biochem, 270, 4208-4215.  
11709175 A.Spallarossa, J.L.Donahue, T.J.Larson, M.Bolognesi, and D.Bordo (2001).
Escherichia coli GlpE is a prototype sulfurtransferase for the single-domain rhodanese homology superfamily.
  Structure, 9, 1117-1125.
PDB codes: 1gmx 1gn0
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.