spacer
spacer

PDBsum entry 1gx9

Go to PDB code: 
protein ligands links
Lipocalin PDB id
1gx9

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
161 a.a. *
Ligands
REA
Waters ×139
* Residue conservation analysis
PDB id:
1gx9
Name: Lipocalin
Title: Bovine beta-lactoglobulin complexed with retinoic acid, trigonal lattice z
Structure: Beta-lactoglobulin. Chain: a. Synonym: beta-lg, allergen bos d 5
Source: Bos taurus. Bovine. Organism_taxid: 9913. Variant: genetic variant b. Organ: mammary gland. Other_details: protein purchased from sigma chemicals, cat.No. L8005
Biol. unit: Dimer (from PDB file)
Resolution:
2.34Å     R-factor:   0.227     R-free:   0.298
Authors: G.Kontopidis,L.Sawyer
Key ref:
G.Kontopidis et al. (2002). The ligand-binding site of bovine beta-lactoglobulin: evidence for a function? J Mol Biol, 318, 1043-1055. PubMed id: 12054801 DOI: 10.1016/S0022-2836(02)00017-7
Date:
29-Mar-02     Release date:   13-Jun-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P02754  (LACB_BOVIN) -  Beta-lactoglobulin from Bos taurus
Seq:
Struc:
178 a.a.
161 a.a.
Key:    Secondary structure  CATH domain

 

 
DOI no: 10.1016/S0022-2836(02)00017-7 J Mol Biol 318:1043-1055 (2002)
PubMed id: 12054801  
 
 
The ligand-binding site of bovine beta-lactoglobulin: evidence for a function?
G.Kontopidis, C.Holt, L.Sawyer.
 
  ABSTRACT  
 
Ever since the fortuitous observation that beta-lactoglobulin (beta-Lg), the major whey protein in the milk of ruminants, bound retinol, the details of the binding have been controversial. beta-Lg is a lipocalin, like plasma retinol-binding protein, so that ligand association was expected to make use of the central cavity in the protein. However, an early crystallographic analysis and some of the more recent solution studies indicated binding elsewhere. We have now determined the crystal structures of the complexes of the trigonal form of beta-Lg at pH 7.5 with bound retinol (R=21.4% for 7329 reflections between 20 and 2.4 A resolution, R(free)=30.6%) and with bound retinoic acid (R=22.7% for 7813 reflections between 20 and 2.34 A resolution, R(free)=29.8%). Both ligands are found to occupy the central calyx in a manner similar to retinol binding in retinol-binding protein. We find no evidence of binding at the putative external binding site in either of these structural analyses. Further, competition between palmitic acid and retinol reveals only palmitate bound to the protein. An explanation is provided for the lack of ligand binding to the orthorhombic crystal form also obtained at pH 7.5. Finally, the possible function of beta-Lg is discussed in the light of its species distribution and similarity to other lipocalins.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. A diagram of the binding site of bovine b-Lg showing the contacts less than 3.9 Å made by retinol to the protein. Notice that there are no obvious contacts of the hydroxyl group to either Lys60 or Lys69, and that the only hydrogen bond involving the ligand appears to be that to Glu62.
Figure 4.
Figure 4. A cladogram derived from the amino acid sequences of b-lactoglobulin, glycodelin and retinol-binding protein. The alignment was carried out by Dr Andrew Coulson and TREEVIEW[58.] was used to produce the diagram. All of the proteins used in the alignment were full-length, mature (no signal sequence is present) b-lactoglobulins with the exception of human glycodelin, labelled Glycodelin, and the 71 amino acid fragment from baboon endometrium, labelled Baboon fra. The sequences were from the SwissProt databank [59.] unless otherwise noted: cow, P02754; cow pseudo-gene; [48.] buffalo, P02755; goat, P02756; goat pseudo-gene, Z47079; sheep, P02757; dolphin, B61590; pig, P04119; dog, P33685; dog III, P33686; cat I, P33687; cat III, P33688; donkey I, P13613; horse I, P02758; donkey II, P19647; horse II, P07380; cat II, P21664; baboon, AF021261; glycodelin, P09466; wallaby, Q29614; kangaroo, P11944; possum, Q29146. For RBP: toad, P06172; chicken, P41263; rat, P27485; human, P02753; horse P19, Q28388.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2002, 318, 1043-1055) copyright 2002.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21360616 J.Loch, A.Polit, A.Górecki, P.Bonarek, K.Kurpiewska, M.Dziedzicka-Wasylewska, and K.Lewiński (2011).
Two modes of fatty acid binding to bovine β-lactoglobulin-crystallographic and spectroscopic studies.
  J Mol Recognit, 24, 341-349.
PDB codes: 3npo 3nq3 3nq9
21507408 P.Ferranti, G.Mamone, G.Picariello, and F.Addeo (2011).
The "dark side" of β-lactoglobulin: Unedited structural features suggest unexpected functions.
  J Chromatogr A, 1218, 3423-3431.  
19228114 C.Jobichen, A.Z.Fernandis, A.Velazquez-Campoy, K.Y.Leung, Y.K.Mok, M.R.Wenk, and J.Sivaraman (2009).
Identification and characterization of the lipid-binding property of GrlR, a locus of enterocyte effacement regulator.
  Biochem J, 420, 191-199.
PDB code: 3e3c
19189206 F.Mohammadi, A.K.Bordbar, A.Divsalar, K.Mohammadi, and A.A.Saboury (2009).
Interaction of curcumin and diacetylcurcumin with the lipocalin member beta-lactoglobulin.
  Protein J, 28, 117-123.  
19241465 G.Graziano (2009).
Role of hydrophobic effect in the salt-induced dimerization of bovine beta-lactoglobulin at pH 3.
  Biopolymers, 91, 1182-1188.  
19415669 G.Mandalari, A.M.Mackie, N.M.Rigby, M.S.Wickham, and E.N.Mills (2009).
Physiological phosphatidylcholine protects bovine beta-lactoglobulin from simulated gastrointestinal proteolysis.
  Mol Nutr Food Res, 53, S131-S139.  
19298386 M.C.Yang, N.C.Chen, C.J.Chen, C.Y.Wu, and S.J.Mao (2009).
Evidence for beta-lactoglobulin involvement in vitamin D transport in vivo--role of the gamma-turn (Leu-Pro-Met) of beta-lactoglobulin in vitamin D binding.
  FEBS J, 276, 2251-2265.  
19390145 S.A.White, L.Briand, D.J.Scott, and A.J.Borysik (2009).
Structure of rat odorant-binding protein OBP1 at 1.6 A resolution.
  Acta Crystallogr D Biol Crystallogr, 65, 403-410.
PDB code: 3fiq
19056737 Y.W.Tan, S.L.Chan, T.C.Ong, l.e. .Y.Yit, Y.S.Tiong, F.T.Chew, J.Sivaraman, and Y.K.Mok (2009).
Structures of Two Major Allergens, Bla g 4 and Per a 4, from Cockroaches and Their IgE Binding Epitopes.
  J Biol Chem, 284, 3148-3157.
PDB codes: 3ebk 3ebw
18253859 J.Grzyb, P.Malec, I.Rumak, M.Garstka, and K.Strzałka (2008).
Two isoforms of ferredoxin:NADP(+) oxidoreductase from wheat leaves: purification and initial biochemical characterization.
  Photosynth Res, 96, 99.  
18427121 J.Qvist, M.Davidovic, D.Hamelberg, and B.Halle (2008).
A dry ligand-binding cavity in a solvated protein.
  Proc Natl Acad Sci U S A, 105, 6296-6301.  
17932936 L.Vijayalakshmi, R.Krishna, R.Sankaranarayanan, and M.Vijayan (2008).
An asymmetric dimer of beta-lactoglobulin in a low humidity crystal form--structural changes that accompany partial dehydration and protein action.
  Proteins, 71, 241-249.
PDB codes: 2q2m 2q2p 2q39
18004750 M.C.Yang, H.H.Guan, M.Y.Liu, Y.H.Lin, J.M.Yang, W.L.Chen, C.J.Chen, and S.J.Mao (2008).
Crystal structure of a secondary vitamin D3 binding site of milk beta-lactoglobulin.
  Proteins, 71, 1197-1210.
PDB code: 2gj5
17516946 R.Parola, E.Macchi, D.Fracchia, A.Sabbioni, D.Avanzi, M.Motta, P.Accornero, and M.Baratta (2007).
Comparison between plasma and milk levels of leptin during pregnancy and lactation in cow, a relationship with beta-lactoglobulin.
  J Anim Physiol Anim Nutr (Berl), 91, 240-246.  
16862458 A.Divsalar, A.A.Saboury, and A.A.Moosavi-Movahedi (2006).
Conformational and structural analysis of bovine beta lactoglobulin-A upon interaction with Cr+3.
  Protein J, 25, 157-165.  
16721656 E.Lozinsky, S.Iametti, A.Barbiroli, G.I.Likhtenshtein, T.Kálai, K.Hideg, and F.Bonomi (2006).
Structural features of transiently modified beta-lactoglobulin relevant to the stable binding of large hydrophobic molecules.
  Protein J, 25, 1.  
17001652 I.Eberini, P.Fantucci, A.G.Rocco, E.Gianazza, L.Galluccio, D.Maggioni, I.D.Ben, M.Galliano, R.Mazzitello, N.Gaiji, and T.Beringhelli (2006).
Computational and experimental approaches for assessing the interactions between the model calycin beta-lactoglobulin and two antibacterial fluoroquinolones.
  Proteins, 65, 555-567.  
16504339 J.Grzyb, D.Latowski, and K.Strzałka (2006).
Lipocalins - a family portrait.
  J Plant Physiol, 163, 895-915.  
15536085 C.Y.Song, W.L.Chen, M.C.Yang, J.P.Huang, and S.J.Mao (2005).
Epitope mapping of a monoclonal antibody specific to bovine dry milk: involvement of residues 66-76 of strand D in thermal denatured beta-lactoglobulin.
  J Biol Chem, 280, 3574-3582.  
17191836 H.Guth, and R.Fritzler (2004).
Binding studies and computer-aided modelling of macromolecule/odorant interactions.
  Chem Biodivers, 1, 2001-2023.  
14997570 I.Eberini, A.M.Baptista, E.Gianazza, F.Fraternali, and T.Beringhelli (2004).
Reorganization in apo- and holo-beta-lactoglobulin upon protonation of Glu89: molecular dynamics and pKa calculations.
  Proteins, 54, 744-758.  
15075410 T.Croguennec, D.Mollé, R.Mehra, and S.Bouhallab (2004).
Spectroscopic characterization of heat-induced nonnative beta-lactoglobulin monomers.
  Protein Sci, 13, 1340-1346.  
14573854 M.Gottschalk, H.Nilsson, H.Roos, and B.Halle (2003).
Protein self-association in solution: the bovine beta -lactoglobulin dimer and octamer.
  Protein Sci, 12, 2404-2411.  
12963719 M.Yagi, K.Sakurai, C.Kalidas, C.A.Batt, and Y.Goto (2003).
Reversible unfolding of bovine beta-lactoglobulin mutants without a free thiol group.
  J Biol Chem, 278, 47009-47015.  
14622017 S.Kumar, K.Modig, and B.Halle (2003).
Trifluoroethanol-induced beta --> alpha transition in beta-lactoglobulin: hydration and cosolvent binding studied by 2H, 17O, and 19F magnetic relaxation dispersion.
  Biochemistry, 42, 13708-13716.  
14608614 T.Imre, F.Zsila, and P.T.Szabó (2003).
Electrospray mass spectrometric investigation of the binding of cis-parinaric acid to bovine beta-lactoglobulin and study of the ligand-binding site of the protein using limited proteolysis.
  Rapid Commun Mass Spectrom, 17, 2464-2470.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer