PDBsum entry 1glb

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Phosphotransferase PDB id
Protein chains
162 a.a. *
490 a.a. *
* Residue conservation analysis
PDB id:
Name: Phosphotransferase
Title: Structure of the regulatory complex of escherichia coli iiig glycerol kinase
Structure: Glucose-specific protein iiiglc. Chain: f. Engineered: yes. Glycerol kinase. Chain: g. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Organism_taxid: 562
Biol. unit: Tetramer (from PQS)
2.60Å     R-factor:   0.205    
Authors: J.H.Hurley,D.Worthylake,H.R.Faber,N.D.Meadow,S.Roseman,D.W.P S.J.Remington
Key ref: J.H.Hurley et al. (1993). Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science, 259, 673-677. PubMed id: 8430315 DOI: 10.1126/science.8430315
28-Oct-92     Release date:   31-Oct-93    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P69783  (PTGA_ECOLI) -  Glucose-specific phosphotransferase enzyme IIA component
169 a.a.
162 a.a.
Protein chain
Pfam   ArchSchema ?
P0A6F3  (GLPK_ECOLI) -  Glycerol kinase
502 a.a.
490 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chain G: E.C.  - Glycerol kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + glycerol = ADP + sn-glycerol 3-phosphate
Bound ligand (Het Group name = GOL)
corresponds exactly
Bound ligand (Het Group name = ADP)
corresponds exactly
+ sn-glycerol 3-phosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     membrane   4 terms 
  Biological process     metabolic process   12 terms 
  Biochemical function     catalytic activity     9 terms  


DOI no: 10.1126/science.8430315 Science 259:673-677 (1993)
PubMed id: 8430315  
Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase.
J.H.Hurley, H.R.Faber, D.Worthylake, N.D.Meadow, S.Roseman, D.W.Pettigrew, S.J.Remington.
The phosphocarrier protein IIIGlc is an integral component of the bacterial phosphotransferase (PTS) system. Unphosphorylated IIIGlc inhibits non-PTS carbohydrate transport systems by binding to diverse target proteins. The crystal structure at 2.6 A resolution of one of the targets, glycerol kinase (GK), in complex with unphosphorylated IIIGlc, glycerol, and adenosine diphosphate was determined. GK contains a region that is topologically identical to the adenosine triphosphate binding domains of hexokinase, the 70-kD heat shock cognate, and actin. IIIGlc binds far from the catalytic site of GK, indicating that long-range conformational changes mediate the inhibition of GK by IIIGlc. GK and IIIGlc are bound by hydrophobic and electrostatic interactions, with only one hydrogen bond involving an uncharged group. The phosphorylation site of IIIGlc, His90, is buried in a hydrophobic environment formed by the active site region of IIIGlc and a 3(10) helix of GK, suggesting that phosphorylation prevents IIIGlc binding to GK by directly disrupting protein-protein interactions.

Literature references that cite this PDB file's key reference

  PubMed id Reference
19040641 C.Schnick, S.D.Polley, Q.L.Fivelman, L.C.Ranford-Cartwright, S.R.Wilkinson, J.A.Brannigan, A.J.Wilkinson, and D.A.Baker (2009).
Structure and non-essential function of glycerol kinase in Plasmodium falciparum blood stages.
  Mol Microbiol, 71, 533-545.
PDB codes: 2w40 2w41
19056335 D.W.Pettigrew (2009).
Amino acid substitutions in the sugar kinase/hsp70/actin superfamily conserved ATPase core of E. coli glycerol kinase modulate allosteric ligand affinity but do not alter allosteric coupling.
  Arch Biochem Biophys, 481, 151-156.  
19819219 D.W.Pettigrew (2009).
Oligomeric interactions provide alternatives to direct steric modes of control of sugar kinase/actin/hsp70 superfamily functions by heterotropic allosteric effectors: inhibition of E. coli glycerol kinase.
  Arch Biochem Biophys, 492, 29-39.  
18997863 P.M.Durand, K.Naidoo, and T.L.Coetzer (2008).
Evolutionary patterning: a novel approach to the identification of potential drug target sites in Plasmodium falciparum.
  PLoS ONE, 3, e3685.  
18422647 Y.Koga, R.Katsumi, D.J.You, H.Matsumura, K.Takano, and S.Kanaya (2008).
Crystal structure of highly thermostable glycerol kinase from a hyperthermophilic archaeon in a dimeric form.
  FEBS J, 275, 2632-2643.
PDB code: 2zf5
17154432 A.K.Hirsch, F.R.Fischer, and F.Diederich (2007).
Phosphate recognition in structural biology.
  Angew Chem Int Ed Engl, 46, 338-352.  
17289841 C.R.Lee, S.H.Cho, M.J.Yoon, A.Peterkofsky, and Y.J.Seok (2007).
Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA.
  Proc Natl Acad Sci U S A, 104, 4124-4129.  
17123542 E.Di Luccio, B.Petschacher, J.Voegtli, H.T.Chou, H.Stahlberg, B.Nidetzky, and D.K.Wilson (2007).
Structural and kinetic studies of induced fit in xylulose kinase from Escherichia coli.
  J Mol Biol, 365, 783-798.
PDB codes: 2itm 2nlx
17890304 J.S.Richardson, and I.J.Oresnik (2007).
L-Rhamnose transport is sugar kinase (RhaK) dependent in Rhizobium leguminosarum bv. trifolii.
  J Bacteriol, 189, 8437-8446.  
  17277457 R.Katsumi, Y.Koga, D.J.You, H.Matsumura, K.Takano, and S.Kanaya (2007).
Crystallization and preliminary X-ray diffraction study of glycerol kinase from the hyperthermophilic archaeon Thermococcus kodakaraensis.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 126-129.  
16905100 J.Alvarado, A.Ghosh, T.Janovitz, A.Jauregui, M.S.Hasson, and D.A.Sanders (2006).
Origin of exopolyphosphatase processivity: Fusion of an ASKHA phosphotransferase and a cyclic nucleotide phosphodiesterase homolog.
  Structure, 14, 1263-1272.
PDB code: 1u6z
17158705 J.Deutscher, C.Francke, and P.W.Postma (2006).
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
  Microbiol Mol Biol Rev, 70, 939.  
16855243 K.Yang, Y.Eyobo, L.A.Brand, D.Martynowski, D.Tomchick, E.Strauss, and H.Zhang (2006).
Crystal structure of a type III pantothenate kinase: insight into the mechanism of an essential coenzyme A biosynthetic enzyme universally distributed in bacteria.
  J Bacteriol, 188, 5532-5540.
PDB code: 2gtd
16963640 L.Volpon, C.R.Young, A.Matte, and K.Gehring (2006).
NMR structure of the enzyme GatB of the galactitol-specific phosphoenolpyruvate-dependent phosphotransferase system and its interaction with GatA.
  Protein Sci, 15, 2435-2441.
PDB code: 1tvm
16164569 C.R.Lee, B.M.Koo, S.H.Cho, Y.J.Kim, M.J.Yoon, A.Peterkofsky, and Y.J.Seok (2005).
Requirement of the dephospho-form of enzyme IIANtr for derepression of Escherichia coli K-12 ilvBN expression.
  Mol Microbiol, 58, 334-344.  
16314304 T.W.Nam, Y.H.Park, H.J.Jeong, S.Ryu, and Y.J.Seok (2005).
Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP*cAMP complex.
  Nucleic Acids Res, 33, 6712-6722.  
15466045 V.V.Lunin, Y.Li, J.D.Schrag, P.Iannuzzi, M.Cygler, and A.Matte (2004).
Crystal structures of Escherichia coli ATP-dependent glucokinase and its complex with glucose.
  J Bacteriol, 186, 6915-6927.
PDB codes: 1q18 1sz2
12636049 C.Hellerud, A.Burlina, C.Gabelli, J.R.Ellis, P.G.Nyholm, and S.Lindstedt (2003).
Glycerol metabolism and the determination of triglycerides--clinical, biochemical and molecular findings in six subjects.
  Clin Chem Lab Med, 41, 46-55.  
12626746 L.Kang, J.Li, T.Zhao, F.Xiao, X.Tang, R.Thilmony, S.He, and J.M.Zhou (2003).
Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence.
  Proc Natl Acad Sci U S A, 100, 3519-3524.  
12829462 P.Grayson, E.Tajkhorshid, and K.Schulten (2003).
Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics.
  Biophys J, 85, 36-48.  
12161559 A.C.Pawlyk, and D.W.Pettigrew (2002).
Transplanting allosteric control of enzyme activity by protein-protein interactions: coupling a regulatory site to the conserved catalytic core.
  Proc Natl Acad Sci U S A, 99, 11115-11120.  
11929549 E.Darbon, P.Servant, S.Poncet, and J.Deutscher (2002).
Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
  Mol Microbiol, 43, 1039-1052.  
12199695 J.K.Bell, P.J.Pease, J.E.Bell, G.A.Grant, and L.J.Banaszak (2002).
De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal.
  Eur J Biochem, 269, 4176-4184.  
12146972 L.F.García-Alles, A.Zahn, and B.Erni (2002).
Sugar recognition by the glucose and mannose permeases of Escherichia coli. Steady-state kinetics and inhibition studies.
  Biochemistry, 41, 10077-10086.  
12162561 S.Sakasegawa, H.Takehara, I.Yoshioka, H.Misaki, H.Sakuraba, and T.Ohshima (2002).
Stabilization of flavobacterium meningosepticum glycerol kinase by introduction of a hydrogen bond.
  Biosci Biotechnol Biochem, 66, 1374-1377.  
12003946 T.Eppler, P.Postma, A.Schütz, U.Völker, and W.Boos (2002).
Glycerol-3-phosphate-induced catabolite repression in Escherichia coli.
  J Bacteriol, 184, 3044-3052.  
11344141 C.K.Holtman, A.C.Pawlyk, N.D.Meadow, and D.W.Pettigrew (2001).
Reverse genetics of Escherichia coli glycerol kinase allosteric regulation and glucose control of glycerol utilization in vivo.
  J Bacteriol, 183, 3336-3344.  
11512153 C.L.Verlinde, V.Hannaert, C.Blonski, M.Willson, J.J.Périé, L.A.Fothergill-Gilmore, F.R.Opperdoes, M.H.Gelb, W.G.Hol, and P.A.Michels (2001).
Glycolysis as a target for the design of new anti-trypanosome drugs.
  Drug Resist Updat, 4, 50-65.  
11385633 D.Brisson, M.C.Vohl, J.St-Pierre, T.J.Hudson, and D.Gaudet (2001).
Glycerol: a neglected variable in metabolic processes?
  Bioessays, 23, 534-542.  
11418773 H.S.Huang, T.Inoue, K.Ito, and T.Yoshimoto (2001).
Preliminary crystallographic study of Thermus aquaticus glycerol kinase.
  Acta Crystallogr D Biol Crystallogr, 57, 1030-1031.  
11133963 K.A.Buss, D.R.Cooper, C.Ingram-Smith, J.G.Ferry, D.A.Sanders, and M.S.Hasson (2001).
Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases.
  J Bacteriol, 183, 680-686.
PDB code: 1g99
11606204 P.A.vanKuyk, Groot, G.J.Ruijter, Vries, and J.Visser (2001).
The Aspergillus niger D-xylulose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on D-xylose and L-arabinose.
  Eur J Biochem, 268, 5414-5423.  
11157755 T.W.Nam, S.H.Cho, D.Shin, J.H.Kim, J.Y.Jeong, J.H.Lee, J.H.Roe, A.Peterkofsky, S.O.Kang, S.Ryu, and Y.J.Seok (2001).
The Escherichia coli glucose transporter enzyme IICB(Glc) recruits the global repressor Mlc.
  EMBO J, 20, 491-498.  
16233038 Y.Koga, M.Haruki, M.Morikawa, and S.Kanaya (2001).
Stabilities of chimeras of hyperthermophilic and mesophilic glycerol kinases constructed by DNA shuffling.
  J Biosci Bioeng, 91, 551-556.  
10851254 C.A.Sargent, A.Kidd, S.Moore, J.Dean, G.T.Besley, and N.A.Affara (2000).
Five cases of isolated glycerol kinase deficiency, including two families: failure to find genotype:phenotype correlation.
  J Med Genet, 37, 434-441.  
11060015 G.Wang, J.M.Louis, M.Sondej, Y.J.Seok, A.Peterkofsky, and G.M.Clore (2000).
Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIA(glucose) of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system.
  EMBO J, 19, 5635-5649.
PDB code: 1ggr
10759857 I.Králová, D.J.Rigden, F.R.Opperdoes, and P.A.Michels (2000).
Glycerol kinase of Trypanosoma brucei. Cloning, molecular characterization and mutagenesis.
  Eur J Biochem, 267, 2323-2333.  
10966417 K.A.Erlandson, J.H.Park, Wissam, El Khal, H.H.Kao, P.Basaran, S.Brydges, and C.A.Batt (2000).
Dissolution of xylose metabolism in Lactococcus lactis.
  Appl Environ Microbiol, 66, 3974-3980.  
11154065 K.Steinborn, A.Szallies, D.Mecke, and M.Duszenko (2000).
Cloning, heterologous expression and kinetic analysis of glycerol kinase (TbGLK1) from Trypanosoma brucei.
  Biol Chem, 381, 1071-1077.  
10878579 L.A.Boyer, and C.L.Peterson (2000).
Actin-related proteins (Arps): conformational switches for chromatin-remodeling machines?
  Bioessays, 22, 666-672.  
10090737 C.E.Bystrom, D.W.Pettigrew, B.P.Branchaud, P.O'Brien, and S.J.Remington (1999).
Crystal structures of Escherichia coli glycerol kinase variant S58-->W in complex with nonhydrolyzable ATP analogues reveal a putative active conformation of the enzyme as a result of domain motion.
  Biochemistry, 38, 3508-3518.
PDB codes: 1bwf 1glj 1gll
10393270 G.T.Robillard, and J.Broos (1999).
Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system.
  Biochim Biophys Acta, 1422, 73.  
  9882680 M.G.Gunnewijk, P.W.Postma, and B.Poolman (1999).
Phosphorylation and functional properties of the IIA domain of the lactose transport protein of Streptococcus thermophilus.
  J Bacteriol, 181, 632-641.  
10097069 M.Sondej, J.Sun, Y.J.Seok, H.R.Kaback, and A.Peterkofsky (1999).
Deduction of consensus binding sequences on proteins that bind IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system by cysteine scanning mutagenesis of Escherichia coli lactose permease.
  Proc Natl Acad Sci U S A, 96, 3525-3530.  
10194305 S.Mirzoeva, S.Weigand, T.J.Lukas, L.Shuvalova, W.F.Anderson, and D.M.Watterson (1999).
Analysis of the functional coupling between calmodulin's calcium binding and peptide recognition properties.
  Biochemistry, 38, 3936-3947.
PDB code: 1vrk
9493266 A.E.Aleshin, C.Zeng, G.P.Bourenkov, H.D.Bartunik, H.J.Fromm, and R.B.Honzatko (1998).
The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate.
  Structure, 6, 39-50.
PDB code: 1hkb
9562560 A.Matte, L.W.Tari, and L.T.Delbaere (1998).
How do kinases transfer phosphoryl groups?
  Structure, 6, 413-419.  
9538005 D.W.Pettigrew, N.D.Meadow, S.Roseman, and S.J.Remington (1998).
Cation-promoted association of Escherichia coli phosphocarrier protein IIAGlc with regulatory target protein glycerol kinase: substitutions of a Zinc(II) ligand and implications for inducer exclusion.
  Biochemistry, 37, 4875-4883.  
9548916 L.M.Lester, L.A.Rusch, G.J.Robinson, and D.C.Speckhard (1998).
Mapping the active sites of 3-phosphoglycerate kinase and glycerol kinase with monoammine chromium(III) ATP.
  Biochemistry, 37, 5349-5355.  
9817843 M.D.Feese, H.R.Faber, C.E.Bystrom, D.W.Pettigrew, and S.J.Remington (1998).
Glycerol kinase from Escherichia coli and an Ala65-->Thr mutant: the crystal structures reveal conformational changes with implications for allosteric regulation.
  Structure, 6, 1407-1418.
PDB codes: 1bu6 1glf
9843423 M.Ormö, C.E.Bystrom, and S.J.Remington (1998).
Crystal structure of a complex of Escherichia coli glycerol kinase and an allosteric effector fructose 1,6-bisphosphate.
  Biochemistry, 37, 16565-16572.
PDB codes: 1bo5 1bot
9551558 R.L.van Montfort, T.Pijning, K.H.Kalk, I.Hangyi, M.L.Kouwijzer, G.T.Robillard, and B.W.Dijkstra (1998).
The structure of the Escherichia coli phosphotransferase IIAmannitol reveals a novel fold with two conformations of the active site.
  Structure, 6, 377-388.
PDB code: 1a3a
9200688 G.Gemmecker, M.Eberstadt, A.Buhr, R.Lanz, S.G.Grdadolnik, H.Kessler, and B.Erni (1997).
Glucose transporter of Escherichia coli: NMR characterization of the phosphocysteine form of the IIB(Glc) domain and its binding interface with the IIA(Glc) subunit.
  Biochemistry, 36, 7408-7417.  
9246758 J.Deutscher, C.Fischer, V.Charrier, A.Galinier, C.Lindner, E.Darbon, and V.Dossonnet (1997).
Regulation of carbon metabolism in gram-positive bacteria by protein phosphorylation.
  Folia Microbiol (Praha), 42, 171-178.  
9032081 R.L.van Montfort, T.Pijning, K.H.Kalk, J.Reizer, M.H.Saier, M.M.Thunnissen, G.T.Robillard, and B.W.Dijkstra (1997).
The structure of an energy-coupling protein from bacteria, IIBcellobiose, reveals similarity to eukaryotic protein tyrosine phosphatases.
  Structure, 5, 217-225.
PDB code: 1iib
9030753 S.Seip, R.Lanz, R.Gutknecht, K.Flükiger, and B.Erni (1997).
The fructose transporter of Bacillus subtilis encoded by the lev operon: backbone assignment and secondary structure of the IIB(Lev) subunit.
  Eur J Biochem, 243, 306-314.  
9391057 Y.J.Seok, J.Sun, H.R.Kaback, and A.Peterkofsky (1997).
Topology of allosteric regulation of lactose permease.
  Proc Natl Acad Sci U S A, 94, 13515-13519.  
8855953 C.Zeng, A.E.Aleshin, J.B.Hardie, R.W.Harrison, and H.J.Fromm (1996).
ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis.
  Biochemistry, 35, 13157-13164.  
  8631672 D.W.Pettigrew, W.Z.Liu, C.Holmes, N.D.Meadow, and S.Roseman (1996).
A single amino acid change in Escherichia coli glycerol kinase abolishes glucose control of glycerol utilization in vivo.
  J Bacteriol, 178, 2846-2852.  
  8771194 G.A.Grant, D.J.Schuller, and L.J.Banaszak (1996).
A model for the regulation of D-3-phosphoglycerate dehydrogenase, a Vmax-type allosteric enzyme.
  Protein Sci, 5, 34-41.  
9026456 M.H.Saier (1996).
Cyclic AMP-independent catabolite repression in bacteria.
  FEMS Microbiol Lett, 138, 97.  
8791406 S.Frankel, and M.S.Mooseker (1996).
The actin-related proteins.
  Curr Opin Cell Biol, 8, 30-37.  
7831302 J.J.Ye, and M.H.Saier (1995).
Cooperative binding of lactose and the phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis.
  Proc Natl Acad Sci U S A, 92, 417-421.  
7716167 J.Janin (1995).
Elusive affinities.
  Proteins, 21, 30-39.  
7651347 J.van der Vlag, and P.W.Postma (1995).
Regulation of glycerol and maltose uptake by the IIAGlc-like domain of IINag of the phosphotransferase system in Salmonella typhimurium LT2.
  Mol Gen Genet, 248, 236-241.  
  8521274 K.C.Worley, K.Y.King, S.Chua, E.R.McCabe, and R.F.Smith (1995).
Identification of new members of a carbohydrate kinase-encoding gene family.
  J Comput Biol, 2, 451-458.  
7667879 M.H.Saier, S.Chauvaux, J.Deutscher, J.Reizer, and J.J.Ye (1995).
Protein phosphorylation and regulation of carbon metabolism in gram-negative versus gram-positive bacteria.
  Trends Biochem Sci, 20, 267-271.  
  8288553 F.Titgemeyer, R.E.Mason, and M.H.Saier (1994).
Regulation of the raffinose permease of Escherichia coli by the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system.
  J Bacteriol, 176, 543-546.  
  8206828 J.van der Vlag, K.van Dam, and P.W.Postma (1994).
Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in Salmonella typhimurium.
  J Bacteriol, 176, 3518-3526.  
8170944 M.Feese, D.W.Pettigrew, N.D.Meadow, S.Roseman, and S.J.Remington (1994).
Cation-promoted association of a regulatory and target protein is controlled by protein phosphorylation.
  Proc Natl Acad Sci U S A, 91, 3544-3548.
PDB codes: 1glc 1gld 1gle
7815935 M.H.Saier, and J.Reizer (1994).
The bacterial phosphotransferase system: new frontiers 30 years later.
  Mol Microbiol, 13, 755-764.  
7712285 O.Herzberg, and R.Klevit (1994).
Unraveling a bacterial hexose transport pathway.
  Curr Opin Struct Biol, 4, 814-822.  
  7982572 R.F.Rosenzweig, R.R.Sharp, D.S.Treves, and J.Adams (1994).
Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli.
  Genetics, 137, 903-917.  
8212131 J.Reizer, A.Reizer, M.H.Saier, P.Bork, and C.Sander (1993).
Exopolyphosphate phosphatase and guanosine pentaphosphate phosphatase belong to the sugar kinase/actin/hsp 70 superfamily.
  Trends Biochem Sci, 18, 247-248.  
15335756 J.Stock (1993).
Protein phosphorylation: phosphoprotein talk.
  Curr Biol, 3, 303-305.  
  8246840 P.W.Postma, J.W.Lengeler, and G.R.Jacobson (1993).
Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.
  Microbiol Rev, 57, 543-594.  
8401584 W.Guo, K.Worley, V.Adams, J.Mason, D.Sylvester-Jackson, Y.H.Zhang, J.A.Towbin, D.D.Fogt, S.Madu, and D.A.Wheeler (1993).
Genomic scanning for expressed sequences in Xp21 identifies the glycerol kinase gene.
  Nat Genet, 4, 367-372.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.