spacer
spacer

PDBsum entry 1g0h

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
1g0h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
252 a.a. *
Ligands
IPD ×2
Metals
_CA ×4
Waters ×78
* Residue conservation analysis
PDB id:
1g0h
Name: Hydrolase
Title: Crystal structure of mj0109 gene product inositol monophosphatase- fructose 1,6 bisphosphatase
Structure: Inositol monophosphatase. Chain: a, b. Synonym: mj0109 gene product. Engineered: yes
Source: Methanocaldococcus jannaschii. Organism_taxid: 2190. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.30Å     R-factor:   0.226     R-free:   0.279
Authors: K.A.Johnson,L.Chen,H.Yang,M.F.Roberts,B.Stec
Key ref:
K.A.Johnson et al. (2001). Crystal structure and catalytic mechanism of the MJ0109 gene product: a bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities. Biochemistry, 40, 618-630. PubMed id: 11170378 DOI: 10.1021/bi0016422
Date:
06-Oct-00     Release date:   14-Mar-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q57573  (BSUHB_METJA) -  Fructose-1,6-bisphosphatase/inositol-1-monophosphatase from Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440)
Seq:
Struc:
252 a.a.
252 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.3.1.3.11  - fructose-bisphosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Pentose Phosphate Pathway (later stages)
      Reaction: beta-D-fructose 1,6-bisphosphate + H2O = beta-D-fructose 6-phosphate + phosphate
beta-D-fructose 1,6-bisphosphate
+ H2O
=
beta-D-fructose 6-phosphate
Bound ligand (Het Group name = IPD)
corresponds exactly
+ phosphate
   Enzyme class 3: E.C.3.1.3.25  - inositol-phosphate phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
      Reaction: a myo-inositol phosphate + H2O = myo-inositol + phosphate
myo-inositol phosphate
+ H2O
=
myo-inositol
Bound ligand (Het Group name = IPD)
matches with 75.00% similarity
+ phosphate
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi0016422 Biochemistry 40:618-630 (2001)
PubMed id: 11170378  
 
 
Crystal structure and catalytic mechanism of the MJ0109 gene product: a bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities.
K.A.Johnson, L.Chen, H.Yang, M.F.Roberts, B.Stec.
 
  ABSTRACT  
 
Inositol monophosphatase (EC 3.1.3.25) in hyperthermophilic archaea is thought to play a role in the biosynthesis of di-myo-inositol-1,1'-phosphate (DIP), an osmolyte unique to hyperthermophiles. The Methanococcus jannaschii MJ109 gene product, the sequence of which is substantially homologous to that of human inositol monophosphatase, exhibits inositol monophosphatase activity but with substrate specificity that is broader than those of bacterial and eukaryotic inositol monophosphatases (it can also act as a fructose bisphosphatase). To understand its substrate specificity as well as the poor inhibition by Li(+) (a potent inhibitor of the mammalian enzyme), we have crystallized the enzyme and determined its three-dimensional structure. The overall fold, as expected, is similar to that of the mammalian enzyme, but the details suggest a closer relationship to fructose 1,6-bisphosphatases. Three complexes of the MJ0109 protein with substrate and/or product and inhibitory as well as activating metal ions suggest that the phosphatase mechanism is a three-metal ion assisted catalysis which is in variance with that proposed previously for the human inositol monophosphatase.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20027624 Z.Li, K.A.Stieglitz, A.L.Shrout, Y.Wei, R.M.Weis, B.Stec, and M.F.Roberts (2010).
Mobile loop mutations in an archaeal inositol monophosphatase: modulating three-metal ion assisted catalysis and lithium inhibition.
  Protein Sci, 19, 309-318.  
19073594 G.Brown, A.Singer, V.V.Lunin, M.Proudfoot, T.Skarina, R.Flick, S.Kochinyan, R.Sanishvili, A.Joachimiak, A.M.Edwards, A.Savchenko, and A.F.Yakunin (2009).
Structural and biochemical characterization of the type II fructose-1,6-bisphosphatase GlpX from Escherichia coli.
  J Biol Chem, 284, 3784-3792.
PDB codes: 1ni9 3big 3bih 3d1r
18391451 S.Kawai, and K.Murata (2008).
Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H).
  Biosci Biotechnol Biochem, 72, 919-930.  
17725819 A.K.Brown, G.Meng, H.Ghadbane, D.J.Scott, L.G.Dover, J.Nigou, G.S.Besra, and K.Fütterer (2007).
Dimerization of inositol monophosphatase Mycobacterium tuberculosis SuhB is not constitutive, but induced by binding of the activator Mg2+.
  BMC Struct Biol, 7, 55.
PDB code: 2q74
17616624 C.Fukuda, S.Kawai, and K.Murata (2007).
NADP(H) phosphatase activities of archaeal inositol monophosphatase and eubacterial 3'-phosphoadenosine 5'-phosphate phosphatase.
  Appl Environ Microbiol, 73, 5447-5452.  
17419729 K.A.Stieglitz, M.F.Roberts, W.Li, and B.Stec (2007).
Crystal structure of the tetrameric inositol 1-phosphate phosphatase (TM1415) from the hyperthermophile, Thermotoga maritima.
  FEBS J, 274, 2461-2469.
PDB codes: 2p3n 2p3v
17652087 Y.Wang, K.A.Stieglitz, M.Bubunenko, D.L.Court, B.Stec, and M.F.Roberts (2007).
The structure of the R184A mutant of the inositol monophosphatase encoded by suhB and implications for its functional interactions in Escherichia coli.
  J Biol Chem, 282, 26989-26996.  
16075199 M.Goenrich, R.K.Thauer, H.Yurimoto, and N.Kato (2005).
Formaldehyde activating enzyme (Fae) and hexulose-6-phosphate synthase (Hps) in Methanosarcina barkeri: a possible function in ribose-5-phosphate biosynthesis.
  Arch Microbiol, 184, 41-48.  
15858264 R.Gill, F.Mohammed, R.Badyal, L.Coates, P.Erskine, D.Thompson, J.Cooper, M.Gore, and S.Wood (2005).
High-resolution structure of myo-inositol monophosphatase, the putative target of lithium therapy.
  Acta Crystallogr D Biol Crystallogr, 61, 545-555.
PDB code: 2bji
15274916 H.Nishimasu, S.Fushinobu, H.Shoun, and T.Wakagi (2004).
The first crystal structure of the novel class of fructose-1,6-bisphosphatase present in thermophilic archaea.
  Structure, 12, 949-959.
PDB code: 1umg
14978036 S.W.Nelson, R.B.Honzatko, and H.J.Fromm (2004).
Origin of cooperativity in the activation of fructose-1,6-bisphosphatase by Mg2+.
  J Biol Chem, 279, 18481-18487.  
12829271 D.G.Kehres, and M.E.Maguire (2003).
Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria.
  FEMS Microbiol Rev, 27, 263-290.  
12649434 K.A.Stieglitz, B.A.Seaton, J.F.Head, B.Stec, and M.F.Roberts (2003).
Unexpected similarity in regulation between an archaeal inositol monophosphatase/fructose bisphosphatase and chloroplast fructose bisphosphatase.
  Protein Sci, 12, 760-767.  
  15803666 R.S.Ronimus, and H.W.Morgan (2003).
Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism.
  Archaea, 1, 199-221.  
12029059 C.H.Verhees, J.Akerboom, E.Schiltz, W.M.de Vos, and J.van der Oost (2002).
Molecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus.
  J Bacteriol, 184, 3401-3405.  
11940584 K.A.Stieglitz, K.A.Johnson, H.Yang, M.F.Roberts, B.A.Seaton, J.F.Head, and B.Stec (2002).
Crystal structure of a dual activity IMPase/FBPase (AF2372) from Archaeoglobus fulgidus. The story of a mobile loop.
  J Biol Chem, 277, 22863-22874.
PDB codes: 1lbv 1lbw 1lbx 1lby 1lbz
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer