|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
269 a.a.
|
 |
|
|
|
|
|
|
|
99 a.a.
|
 |
|
|
|
|
|
|
|
205 a.a.
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Complex (receptor/immunoglobulin)
|
 |
|
Title:
|
 |
Crystal structure of the complex of rat neonatal fc receptor with fc
|
|
Structure:
|
 |
Neonatal fc receptor. Chain: a. Engineered: yes. Beta 2-microglobulin. Chain: b. Engineered: yes. Igg fc. Chain: c. Engineered: yes
|
|
Source:
|
 |
Rattus norvegicus. Norway rat. Organism_taxid: 10116. Organ: serum (mixture of several subtypes). Gene: beta-2-microglobulin. Expressed in: cricetulus griseus. Expression_system_taxid: 10029. Expression_system_cell_line: cho.
|
|
Biol. unit:
|
 |
Tetramer (from
)
|
|
Resolution:
|
 |
|
|
Authors:
|
 |
W.P.Burmeister,P.J.Bjorkman
|
|
Key ref:
|
 |
W.P.Burmeister
et al.
(1994).
Crystal structure of the complex of rat neonatal Fc receptor with Fc.
Nature,
372,
379-383.
PubMed id:
|
 |
|
Date:
|
 |
|
11-Nov-94
|
Release date:
|
14-Feb-95
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P13599
(FCGRN_RAT) -
IgG receptor FcRn large subunit p51 from Rattus norvegicus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
366 a.a.
269 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Nature
372:379-383
(1994)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of the complex of rat neonatal Fc receptor with Fc.
|
|
W.P.Burmeister,
A.H.Huber,
P.J.Bjorkman.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The neonatal Fc receptor (FcRn) transports maternal immunoglobulin G (IgG) to
the bloodstream of the newborn. FcRn is structurally similar to class I major
histocompatibility complex (MHC) molecules, despite differences in the ligands
they bind (the Fc portion of IgG and antigenic peptides, respectively). A
low-resolution crystal structure of the complex between FcRn and Fc localizes
the binding site for Fc to the side of FcRn, distinct from the tops of the alpha
1 and alpha 2 domains which serve as the peptide and T-cell receptor binding
sites in class I molecules. FcRn binds to Fc at the interface between the Fc CH2
and CH3 domains, which contains several histidine residues that could account
for the sharply pH-dependent FcRn/IgG interaction. A dimer of FcRn heterodimers
observed in the co-crystals and in the crystals of FcRn alone could be involved
in binding Fc, correlating with the 2:1 binding stoichiometry between FcRn and
IgG (ref. 4) and suggesting an unusual orientation of FcRn on the membrane.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.W.Barb,
and
J.H.Prestegard
(2011).
NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic.
|
| |
Nat Chem Biol,
7,
147-153.
|
 |
|
|
|
|
 |
J.Pollastrini,
T.M.Dillon,
P.Bondarenko,
and
R.Y.Chou
(2011).
Field flow fractionation for assessing neonatal Fc receptor and Fcγ receptor binding to monoclonal antibodies in solution.
|
| |
Anal Biochem,
414,
88-98.
|
 |
|
|
|
|
 |
Z.Li,
S.Palaniyandi,
R.Zeng,
W.Tuo,
D.C.Roopenian,
and
X.Zhu
(2011).
Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection.
|
| |
Proc Natl Acad Sci U S A,
108,
4388-4393.
|
 |
|
|
|
|
 |
A.Sesarman,
G.Vidarsson,
and
C.Sitaru
(2010).
The neonatal Fc receptor as therapeutic target in IgG-mediated autoimmune diseases.
|
| |
Cell Mol Life Sci,
67,
2533-2550.
|
 |
|
|
|
|
 |
D.B.Tesar,
and
P.J.Björkman
(2010).
An intracellular traffic jam: Fc receptor-mediated transport of immunoglobulin G.
|
| |
Curr Opin Struct Biol,
20,
226-233.
|
 |
|
|
|
|
 |
D.C.Roopenian,
and
V.Z.Sun
(2010).
Clinical ramifications of the MHC family Fc receptor FcRn.
|
| |
J Clin Immunol,
30,
790-797.
|
 |
|
|
|
|
 |
R.T.Peters,
S.C.Low,
G.D.Kamphaus,
J.A.Dumont,
J.V.Amari,
Q.Lu,
G.Zarbis-Papastoitsis,
T.J.Reidy,
E.P.Merricks,
T.C.Nichols,
and
A.J.Bitonti
(2010).
Prolonged activity of factor IX as a monomeric Fc fusion protein.
|
| |
Blood,
115,
2057-2064.
|
 |
|
|
|
|
 |
T.Igawa,
S.Ishii,
T.Tachibana,
A.Maeda,
Y.Higuchi,
S.Shimaoka,
C.Moriyama,
T.Watanabe,
R.Takubo,
Y.Doi,
T.Wakabayashi,
A.Hayasaka,
S.Kadono,
T.Miyazaki,
K.Haraya,
Y.Sekimori,
T.Kojima,
Y.Nabuchi,
Y.Aso,
Y.Kawabe,
and
K.Hattori
(2010).
Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization.
|
| |
Nat Biotechnol,
28,
1203-1207.
|
 |
|
|
|
|
 |
B.A.Wurzburg,
and
T.S.Jardetzky
(2009).
Conformational flexibility in immunoglobulin E-Fc 3-4 revealed in multiple crystal forms.
|
| |
J Mol Biol,
393,
176-190.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Pan,
K.Chen,
L.Chu,
F.Kinderman,
I.Apostol,
and
G.Huang
(2009).
Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn.
|
| |
Protein Sci,
18,
424-433.
|
 |
|
|
|
|
 |
K.Baker,
S.W.Qiao,
T.Kuo,
K.Kobayashi,
M.Yoshida,
W.I.Lencer,
and
R.S.Blumberg
(2009).
Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn.
|
| |
Semin Immunopathol,
31,
223-236.
|
 |
|
|
|
|
 |
R.J.Brezski,
O.Vafa,
D.Petrone,
S.H.Tam,
G.Powers,
M.H.Ryan,
J.L.Luongo,
A.Oberholtzer,
D.M.Knight,
and
R.E.Jordan
(2009).
Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge.
|
| |
Proc Natl Acad Sci U S A,
106,
17864-17869.
|
 |
|
|
|
|
 |
S.Bonetto,
L.Spadola,
A.G.Buchanan,
L.Jermutus,
and
J.Lund
(2009).
Identification of cyclic peptides able to mimic the functional epitope of IgG1-Fc for human Fc gammaRI.
|
| |
FASEB J,
23,
575-585.
|
 |
|
|
|
|
 |
S.Tzaban,
R.H.Massol,
E.Yen,
W.Hamman,
S.R.Frank,
L.A.Lapierre,
S.H.Hansen,
J.R.Goldenring,
R.S.Blumberg,
and
W.I.Lencer
(2009).
The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity.
|
| |
J Cell Biol,
185,
673-684.
|
 |
|
|
|
|
 |
T.T.Kuo,
E.J.de Muinck,
S.M.Claypool,
M.Yoshida,
T.Nagaishi,
V.G.Aveson,
W.I.Lencer,
and
R.S.Blumberg
(2009).
N-Glycan Moieties in Neonatal Fc Receptor Determine Steady-state Membrane Distribution and Directional Transport of IgG.
|
| |
J Biol Chem,
284,
8292-8300.
|
 |
|
|
|
|
 |
Y.He,
G.J.Jensen,
and
P.J.Bjorkman
(2009).
Nanogold as a specific marker for electron cryotomography.
|
| |
Microsc Microanal,
15,
183-188.
|
 |
|
|
|
|
 |
A.H.Keeble,
Z.Khan,
A.Forster,
and
L.C.James
(2008).
TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved.
|
| |
Proc Natl Acad Sci U S A,
105,
6045-6050.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.T.Andersen,
S.Justesen,
B.Fleckenstein,
T.E.Michaelsen,
G.Berntzen,
V.E.Kenanova,
M.B.Daba,
V.Lauvrak,
S.Buus,
and
I.Sandlie
(2008).
Ligand binding and antigenic properties of a human neonatal Fc receptor with mutation of two unpaired cysteine residues.
|
| |
FEBS J,
275,
4097-4110.
|
 |
|
|
|
|
 |
L.Ye,
W.Tuo,
X.Liu,
N.E.Simister,
and
X.Zhu
(2008).
Identification and characterization of an alternatively spliced variant of the MHC class I-related porcine neonatal Fc receptor for IgG.
|
| |
Dev Comp Immunol,
32,
966-979.
|
 |
|
|
|
|
 |
L.Ye,
X.Liu,
S.N.Rout,
Z.Li,
Y.Yan,
L.Lu,
T.Kamala,
N.K.Nanda,
W.Song,
S.K.Samal,
and
X.Zhu
(2008).
The MHC class II-associated invariant chain interacts with the neonatal Fc gamma receptor and modulates its trafficking to endosomal/lysosomal compartments.
|
| |
J Immunol,
181,
2572-2585.
|
 |
|
|
|
|
 |
X.Liu,
L.Ye,
Y.Bai,
H.Mojidi,
N.E.Simister,
and
X.Zhu
(2008).
Activation of the JAK/STAT-1 signaling pathway by IFN-gamma can down-regulate functional expression of the MHC class I-related neonatal Fc receptor for IgG.
|
| |
J Immunol,
181,
449-463.
|
 |
|
|
|
|
 |
X.Y.Liu,
L.M.Pop,
and
E.S.Vitetta
(2008).
Engineering therapeutic monoclonal antibodies.
|
| |
Immunol Rev,
222,
9.
|
 |
|
|
|
|
 |
A.Datta-Mannan,
D.R.Witcher,
Y.Tang,
J.Watkins,
and
V.J.Wroblewski
(2007).
Monoclonal antibody clearance. Impact of modulating the interaction of IgG with the neonatal Fc receptor.
|
| |
J Biol Chem,
282,
1709-1717.
|
 |
|
|
|
|
 |
D.C.Roopenian,
and
S.Akilesh
(2007).
FcRn: the neonatal Fc receptor comes of age.
|
| |
Nat Rev Immunol,
7,
715-725.
|
 |
|
|
|
|
 |
E.J.Adams,
Z.S.Juo,
R.T.Venook,
M.J.Boulanger,
H.Arase,
L.L.Lanier,
and
K.C.Garcia
(2007).
Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors.
|
| |
Proc Natl Acad Sci U S A,
104,
10128-10133.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Chen,
M.Chloupková,
J.Gao,
T.L.Chapman-Arvedson,
and
C.A.Enns
(2007).
HFE Modulates Transferrin Receptor 2 Levels in Hepatoma Cells via Interactions That Differ from Transferrin Receptor 1-HFE Interactions.
|
| |
J Biol Chem,
282,
36862-36870.
|
 |
|
|
|
|
 |
P.A.Ramsland,
N.Willoughby,
H.M.Trist,
W.Farrugia,
P.M.Hogarth,
J.D.Fraser,
and
B.D.Wines
(2007).
Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1.
|
| |
Proc Natl Acad Sci U S A,
104,
15051-15056.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.W.Qiao,
W.I.Lencer,
and
R.S.Blumberg
(2007).
How the controller is controlled - neonatal Fc receptor expression and immunoglobulin G homeostasis.
|
| |
Immunology,
120,
145-147.
|
 |
|
|
|
|
 |
X.Liu,
L.Ye,
G.J.Christianson,
J.Q.Yang,
D.C.Roopenian,
and
X.Zhu
(2007).
NF-kappaB signaling regulates functional expression of the MHC class I-related neonatal Fc receptor for IgG via intronic binding sequences.
|
| |
J Immunol,
179,
2999-3011.
|
 |
|
|
|
|
 |
D.B.Tesar,
N.E.Tiangco,
and
P.J.Bjorkman
(2006).
Ligand valency affects transcytosis, recycling and intracellular trafficking mediated by the neonatal Fc receptor.
|
| |
Traffic,
7,
1127-1142.
|
 |
|
|
|
|
 |
S.Boonyarattanakalin,
S.E.Martin,
Q.Sun,
and
B.R.Peterson
(2006).
A synthetic mimic of human Fc receptors: defined chemical modification of cell surfaces enables efficient endocytic uptake of human immunoglobulin-G.
|
| |
J Am Chem Soc,
128,
11463-11470.
|
 |
|
|
|
|
 |
D.T.Kamei,
B.J.Lao,
M.S.Ricci,
R.Deshpande,
H.Xu,
B.Tidor,
and
D.A.Lauffenburger
(2005).
Quantitative methods for developing Fc mutants with extended half-lives.
|
| |
Biotechnol Bioeng,
92,
748-760.
|
 |
|
|
|
|
 |
G.Z.Ferl,
A.M.Wu,
and
J.J.DiStefano
(2005).
A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn).
|
| |
Ann Biomed Eng,
33,
1640-1652.
|
 |
|
|
|
|
 |
N.L.Wernick,
V.Haucke,
and
N.E.Simister
(2005).
Recognition of the tryptophan-based endocytosis signal in the neonatal Fc Receptor by the mu subunit of adaptor protein-2.
|
| |
J Biol Chem,
280,
7309-7316.
|
 |
|
|
|
|
 |
R.Jefferis
(2005).
Glycosylation of recombinant antibody therapeutics.
|
| |
Biotechnol Prog,
21,
11-16.
|
 |
|
|
|
|
 |
A.K.Mitra,
H.Célia,
G.Ren,
J.G.Luz,
I.A.Wilson,
and
L.Teyton
(2004).
Supine orientation of a murine MHC class I molecule on the membrane bilayer.
|
| |
Curr Biol,
14,
718-724.
|
 |
|
|
|
|
 |
J.Agniswamy,
B.Lei,
J.M.Musser,
and
P.D.Sun
(2004).
Insight of host immune evasion mediated by two variants of group a Streptococcus Mac protein.
|
| |
J Biol Chem,
279,
52789-52796.
|
 |
|
|
|
|
 |
L.M.Boulanger,
and
C.J.Shatz
(2004).
Immune signalling in neural development, synaptic plasticity and disease.
|
| |
Nat Rev Neurosci,
5,
521-531.
|
 |
|
|
|
|
 |
P.R.Hinton,
M.G.Johlfs,
J.M.Xiong,
K.Hanestad,
K.C.Ong,
C.Bullock,
S.Keller,
M.T.Tang,
J.Y.Tso,
M.Vásquez,
and
N.Tsurushita
(2004).
Engineered human IgG antibodies with longer serum half-lives in primates.
|
| |
J Biol Chem,
279,
6213-6216.
|
 |
|
|
|
|
 |
S.M.Claypool,
B.L.Dickinson,
J.S.Wagner,
F.E.Johansen,
N.Venu,
J.A.Borawski,
W.I.Lencer,
and
R.S.Blumberg
(2004).
Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fcgamma-receptor.
|
| |
Mol Biol Cell,
15,
1746-1759.
|
 |
|
|
|
|
 |
B.A.Wurzburg,
and
T.S.Jardetzky
(2003).
The IgA receptor complex: a two-for-one deal.
|
| |
Nat Struct Biol,
10,
585-587.
|
 |
|
|
|
|
 |
Y.Liu,
Y.Xiong,
O.V.Naidenko,
J.H.Liu,
R.Zhang,
A.Joachimiak,
M.Kronenberg,
H.Cheroutre,
E.L.Reinherz,
and
J.H.Wang
(2003).
The crystal structure of a TL/CD8alphaalpha complex at 2.1 A resolution: implications for modulation of T cell activation and memory.
|
| |
Immunity,
18,
205-215.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.J.Esteves,
P.C.Alves,
N.Ferrand,
and
W.van der Loo
(2002).
Hotspot variation at the CH2-CH3 interface of leporid IgG antibodies (Oryctolagus, Sylvilagus and Lepus).
|
| |
Eur J Immunogenet,
29,
529-535.
|
 |
|
|
|
|
 |
R.Atalay,
A.Zimmermann,
M.Wagner,
E.Borst,
C.Benz,
M.Messerle,
and
H.Hengel
(2002).
Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcgamma receptor homologs.
|
| |
J Virol,
76,
8596-8608.
|
 |
|
|
|
|
 |
S.M.Claypool,
B.L.Dickinson,
M.Yoshida,
W.I.Lencer,
and
R.S.Blumberg
(2002).
Functional reconstitution of human FcRn in Madin-Darby canine kidney cells requires co-expressed human beta 2-microglobulin.
|
| |
J Biol Chem,
277,
28038-28050.
|
 |
|
|
|
|
 |
C.A.Enns
(2001).
Pumping iron: the strange partnership of the hemochromatosis protein, a class I MHC homolog, with the transferrin receptor.
|
| |
Traffic,
2,
167-174.
|
 |
|
|
|
|
 |
W.L.Martin,
A.P.West,
L.Gan,
and
P.J.Bjorkman
(2001).
Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding.
|
| |
Mol Cell,
7,
867-877.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.P.West,
and
P.J.Bjorkman
(2000).
Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor(,).
|
| |
Biochemistry,
39,
9698-9708.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.W.Vermeer,
W.Norde,
and
A.van Amerongen
(2000).
The unfolding/denaturation of immunogammaglobulin of isotype 2b and its F(ab) and F(c) fragments.
|
| |
Biophys J,
79,
2150-2154.
|
 |
|
|
|
|
 |
B.K.Flesch,
and
J.Neppert
(2000).
Functions of the Fc receptors for immunoglobulin G.
|
| |
J Clin Lab Anal,
14,
141-156.
|
 |
|
|
|
|
 |
E.J.Sundberg,
and
R.A.Mariuzza
(2000).
Luxury accommodations: the expanding role of structural plasticity in protein-protein interactions.
|
| |
Structure,
8,
R137-R142.
|
 |
|
|
|
|
 |
K.Shinkai,
and
R.M.Locksley
(2000).
CD1, tuberculosis, and the evolution of major histocompatibility complex molecules.
|
| |
J Exp Med,
191,
907-914.
|
 |
|
|
|
|
 |
P.Telleman,
and
R.P.Junghans
(2000).
The role of the Brambell receptor (FcRB) in liver: protection of endocytosed immunoglobulin G (IgG) from catabolism in hepatocytes rather than transport of IgG to bile.
|
| |
Immunology,
100,
245-251.
|
 |
|
|
|
|
 |
R.Ehrlich,
and
F.A.Lemonnier
(2000).
HFE--a novel nonclassical class I molecule that is involved in iron metabolism.
|
| |
Immunity,
13,
585-588.
|
 |
|
|
|
|
 |
V.Ghetie,
and
E.S.Ward
(2000).
Multiple roles for the major histocompatibility complex class I- related receptor FcRn.
|
| |
Annu Rev Immunol,
18,
739-766.
|
 |
|
|
|
|
 |
W.L.DeLano,
M.H.Ultsch,
A.M.de Vos,
and
J.A.Wells
(2000).
Convergent solutions to binding at a protein-protein interface.
|
| |
Science,
287,
1279-1283.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.A.Wilson,
and
L.K.Jolliffe
(1999).
The structure, organization, activation and plasticity of the erythropoietin receptor.
|
| |
Curr Opin Struct Biol,
9,
696-704.
|
 |
|
|
|
|
 |
K.Maenaka,
and
E.Y.Jones
(1999).
MHC superfamily structure and the immune system.
|
| |
Curr Opin Struct Biol,
9,
745-753.
|
 |
|
|
|
|
 |
L.M.Sánchez,
D.M.Penny,
and
P.J.Bjorkman
(1999).
Stoichiometry of the interaction between the major histocompatibility complex-related Fc receptor and its Fc ligand.
|
| |
Biochemistry,
38,
9471-9476.
|
 |
|
|
|
|
 |
P.Sondermann,
R.Huber,
and
U.Jacob
(1999).
Crystal structure of the soluble form of the human fcgamma-receptor IIb: a new member of the immunoglobulin superfamily at 1.7 A resolution.
|
| |
EMBO J,
18,
1095-1103.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.L.Chapman,
I.You,
I.M.Joseph,
P.J.Bjorkman,
S.L.Morrison,
and
M.Raghavan
(1999).
Characterization of the interaction between the herpes simplex virus type I Fc receptor and immunoglobulin G.
|
| |
J Biol Chem,
274,
6911-6919.
|
 |
|
|
|
|
 |
B.A.Helm,
I.Sayers,
E.A.Padlan,
J.E.McKendrick,
and
A.C.Spivey
(1998).
Structure/function studies on IgE as a basis for the development of rational IgE antagonists.
|
| |
Allergy,
53,
77-82.
|
 |
|
|
|
|
 |
C.Medesan,
P.Cianga,
M.Mummert,
D.Stanescu,
V.Ghetie,
and
E.S.Ward
(1998).
Comparative studies of rat IgG to further delineate the Fc:FcRn interaction site.
|
| |
Eur J Immunol,
28,
2092-2100.
|
 |
|
|
|
|
 |
D.E.Vaughn,
and
P.J.Bjorkman
(1998).
Structural basis of pH-dependent antibody binding by the neonatal Fc receptor.
|
| |
Structure,
6,
63-73.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.A.Wilson,
and
P.J.Bjorkman
(1998).
Unusual MHC-like molecules: CD1, Fc receptor, the hemochromatosis gene product, and viral homologs.
|
| |
Curr Opin Immunol,
10,
67-73.
|
 |
|
|
|
|
 |
J.A.Lebrón,
M.J.Bennett,
D.E.Vaughn,
A.J.Chirino,
P.M.Snow,
G.A.Mintier,
J.N.Feder,
and
P.J.Bjorkman
(1998).
Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor.
|
| |
Cell,
93,
111-123.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.J.Harris,
S.B.Larson,
E.Skaletsky,
and
A.McPherson
(1998).
Comparison of the conformations of two intact monoclonal antibodies with hinges.
|
| |
Immunol Rev,
163,
35-43.
|
 |
|
|
|
|
 |
R.Jefferis,
J.Lund,
and
J.D.Pound
(1998).
IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation.
|
| |
Immunol Rev,
163,
59-76.
|
 |
|
|
|
|
 |
R.Urfer,
P.Tsoulfas,
L.O'Connell,
J.A.Hongo,
W.Zhao,
and
L.G.Presta
(1998).
High resolution mapping of the binding site of TrkA for nerve growth factor and TrkC for neurotrophin-3 on the second immunoglobulin-like domain of the Trk receptors.
|
| |
J Biol Chem,
273,
5829-5840.
|
 |
|
|
|
|
 |
S.Bauer,
S.T.Willie,
T.Spies,
and
R.K.Strong
(1998).
Expression, purification, crystallization and crystallographic characterization of the human MHC class I related protein MICA.
|
| |
Acta Crystallogr D Biol Crystallogr,
54,
451-453.
|
 |
|
|
|
|
 |
A.L.Corper,
M.K.Sohi,
V.R.Bonagura,
M.Steinitz,
R.Jefferis,
A.Feinstein,
D.Beale,
M.J.Taussig,
and
B.J.Sutton
(1997).
Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody-antigen interaction.
|
| |
Nat Struct Biol,
4,
374-381.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Tamm,
and
R.E.Schmidt
(1997).
IgG binding sites on human Fc gamma receptors.
|
| |
Int Rev Immunol,
16,
57-85.
|
 |
|
|
|
|
 |
D.E.Vaughn,
and
P.J.Bjorkman
(1997).
High-affinity binding of the neonatal Fc receptor to its IgG ligand requires receptor immobilization.
|
| |
Biochemistry,
36,
9374-9380.
|
 |
|
|
|
|
 |
J.V.Ravetch
(1997).
Fc receptors.
|
| |
Curr Opin Immunol,
9,
121-125.
|
 |
|
|
|
|
 |
L.J.Harris,
S.B.Larson,
K.W.Hasel,
and
A.McPherson
(1997).
Refined structure of an intact IgG2a monoclonal antibody.
|
| |
Biochemistry,
36,
1581-1597.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Riechmann,
and
P.Holliger
(1997).
Antibodies live long and prosper.
|
| |
Nat Biotechnol,
15,
617.
|
 |
|
|
|
|
 |
M.Daëron
(1997).
Fc receptor biology.
|
| |
Annu Rev Immunol,
15,
203-234.
|
 |
|
|
|
|
 |
M.Daëron
(1997).
Structural bases of Fc gamma R functions.
|
| |
Int Rev Immunol,
16,
1.
|
 |
|
|
|
|
 |
O.Mandelboim,
H.T.Reyburn,
E.G.Sheu,
M.Vales-Gomez,
D.M.Davis,
L.Pazmany,
and
J.L.Strominger
(1997).
The binding site of NK receptors on HLA-C molecules.
|
| |
Immunity,
6,
341-350.
|
 |
|
|
|
|
 |
R.P.Junghans,
and
F.W.Brambell
(1997).
Finally! The Brambell receptor (FcRB). Mediator of transmission of immunity and protection from catabolism for IgG.
|
| |
Immunol Res,
16,
29-57.
|
 |
|
|
|
|
 |
V.Ghetie,
S.Popov,
J.Borvak,
C.Radu,
D.Matesoi,
C.Medesan,
R.J.Ober,
and
E.S.Ward
(1997).
Increasing the serum persistence of an IgG fragment by random mutagenesis.
|
| |
Nat Biotechnol,
15,
637-640.
|
 |
|
|
|
|
 |
Z.Liu,
D.C.Roopenian,
X.Zhou,
G.J.Christianson,
L.A.Diaz,
D.D.Sedmak,
and
C.L.Anderson
(1997).
Beta2-microglobulin-deficient mice are resistant to bullous pemphigoid.
|
| |
J Exp Med,
186,
777-783.
|
 |
|
|
|
|
 |
C.Medesan,
C.Radu,
J.K.Kim,
V.Ghetie,
and
E.S.Ward
(1996).
Localization of the site of the IgG molecule that regulates maternofetal transmission in mice.
|
| |
Eur J Immunol,
26,
2533-2536.
|
 |
|
|
|
|
 |
E.D.Ferguson,
B.M.Dutia,
W.R.Hein,
and
J.Hopkins
(1996).
The sheep CD1 gene family contains at least four CD1B homologues.
|
| |
Immunogenetics,
44,
86-96.
|
 |
|
|
|
|
 |
E.K.Kristoffersen,
and
R.Matre
(1996).
Co-localization of beta 2-microglobulin and IgG in human placental syncytiotrophoblasts.
|
| |
Eur J Immunol,
26,
505-507.
|
 |
|
|
|
|
 |
M.Raghavan,
and
P.J.Bjorkman
(1996).
Fc receptors and their interactions with immunoglobulins.
|
| |
Annu Rev Cell Dev Biol,
12,
181-220.
|
 |
|
|
|
|
 |
R.P.Junghans,
and
C.L.Anderson
(1996).
The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor.
|
| |
Proc Natl Acad Sci U S A,
93,
5512-5516.
|
 |
|
|
|
|
 |
V.Ghetie,
J.G.Hubbard,
J.K.Kim,
M.F.Tsen,
Y.Lee,
and
E.S.Ward
(1996).
Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice.
|
| |
Eur J Immunol,
26,
690-696.
|
 |
|
|
|
|
 |
D.I.Stuart,
and
E.Y.Jones
(1995).
Recognition at the cell surface: recent structural insights.
|
| |
Curr Opin Struct Biol,
5,
735-743.
|
 |
|
|
|
|
 |
I.Stroynowski,
and
J.Forman
(1995).
Novel molecules related to MHC antigens.
|
| |
Curr Opin Immunol,
7,
97.
|
 |
|
|
|
|
 |
J.E.Gumperz,
and
P.Parham
(1995).
The enigma of the natural killer cell.
|
| |
Nature,
378,
245-248.
|
 |
|
|
|
|
 |
M.Raghavan,
Y.Wang,
and
P.J.Bjorkman
(1995).
Effects of receptor dimerization on the interaction between the class I major histocompatibility complex-related Fc receptor and IgG.
|
| |
Proc Natl Acad Sci U S A,
92,
11200-11204.
|
 |
|
|
|
|
 |
P.J.Bjorkman,
and
W.P.Burmeister
(1994).
Structures of two classes of MHC molecules elucidated: crucial differences and similarities.
|
| |
Curr Opin Struct Biol,
4,
852-856.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |
|