 |
PDBsum entry 1fid
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Blood coagulation factor
|
PDB id
|
|
|
|
1fid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Structure
5:125-138
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of a 30 kDa C-terminal fragment from the gamma chain of human fibrinogen.
|
|
V.C.Yee,
K.P.Pratt,
H.C.Côté,
I.L.Trong,
D.W.Chung,
E.W.Davie,
R.E.Stenkamp,
D.C.Teller.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
BACKGROUND: Blood coagulation occurs by a cascade of zymogen activation
resulting from minor proteolysis. The final stage of coagulation involves
thrombin generation and limited proteolysis of fibrinogen to give spontaneously
polymerizing fibrin. The resulting fibrin network is covalently crosslinked by
factor XIIIa to yield a stable blood clot. Fibrinogen is a 340 kDa glycoprotein
composed of six polypeptide chains, (alphabetagamma)2, held together by 29
disulfide bonds. The globular C terminus of the gamma chain contains a
fibrin-polymerization surface, the principal factor XIIIa crosslinking site, the
platelet receptor recognition site, and a calcium-binding site. Structural
information on this domain should thus prove helpful in understanding clot
formation. RESULTS: The X-ray crystallographic structure of the 30 kDa globular
C terminus of the gamma chain of human fibrinogen has been determined in one
crystal form using multiple isomorphous replacement methods. The refined
coordinates were used to solve the structure in two more crystal forms by
molecular replacement; the crystal structures have been refined against
diffraction data to either 2.5 A or 2.1 A resolution. Three domains were
identified in the structure, including a C-terminal fibrin-polymerization domain
(P), which contains a single calcium-binding site and a deep binding pocket that
provides the polymerization surface. The overall structure has a pronounced
dipole moment, and the C-terminal residues appear highly flexible. CONCLUSIONS:
The polymerization domain in the gamma chain is the most variable among a family
of fibrinogen-related proteins and contains many acidic residues. These residues
contribute to the molecular dipole moment in the structure, which may allow
electrostatic steering to guide the alignment of fibrin monomers during the
polymerization process. The flexibility of the C-terminal residues, which
contain one of the factor XIIIa crosslinking sites and the platelet receptor
recognition site, may be important in the function of this domain.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
Figure 6.
Figure 6. Schematic representation of the longitudinal (L)
versus transverse (T) end-to-end γ–γ crosslinking between
adjacent fibrin molecules.
|
 |
|
|
|
| |
The above figure is
reprinted
by permission from Cell Press:
Structure
(1997,
5,
125-138)
copyright 1997.
|
|
| |
Figure was
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
R.Kotlín,
Z.Reicheltová,
J.Suttnar,
P.Salaj,
I.Hrachovinová,
T.Riedel,
M.Malý,
M.Oravec,
J.Kvasnicka,
and
J.E.Dyr
(2010).
Two novel fibrinogen variants in the C-terminus of the Bβ-chain: fibrinogen Rokycany and fibrinogen Znojmo.
|
| |
J Thromb Thrombolysis,
30,
311-318.
|
 |
|
|
|
|
 |
T.M.Hansen,
H.Singh,
T.A.Tahir,
and
N.P.Brindle
(2010).
Effects of angiopoietins-1 and -2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface.
|
| |
Cell Signal,
22,
527-532.
|
 |
|
|
|
|
 |
T.Thomsen,
J.B.Moeller,
A.Schlosser,
G.L.Sorensen,
S.K.Moestrup,
N.Palaniyar,
R.Wallis,
J.Mollenhauer,
and
U.Holmskov
(2010).
The recognition unit of FIBCD1 organizes into a noncovalently linked tetrameric structure and uses a hydrophobic funnel (S1) for acetyl group recognition.
|
| |
J Biol Chem,
285,
1229-1238.
|
 |
|
|
|
|
 |
Y.Takada,
Y.Ono,
J.Saegusa,
J.Sagusa,
C.Mitsiades,
N.Mitsiades,
J.Tsai,
Y.He,
E.Maningding,
A.Coleman,
D.Ramirez-Maverakis,
R.Rodrigues,
R.Rodriquez,
Y.Takada,
and
E.Maverakis
(2010).
A T cell-binding fragment of fibrinogen can prevent autoimmunity.
|
| |
J Autoimmun,
34,
453-459.
|
 |
|
|
|
|
 |
L.Medved,
and
J.W.Weisel
(2009).
Recommendations for nomenclature on fibrinogen and fibrin.
|
| |
J Thromb Haemost,
7,
355-359.
|
 |
|
|
|
|
 |
M.Guo,
D.Daines,
J.Tang,
Q.Shen,
R.M.Perrin,
Y.Takada,
S.Y.Yuan,
and
M.H.Wu
(2009).
Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism.
|
| |
Arterioscler Thromb Vasc Biol,
29,
394-400.
|
 |
|
|
|
|
 |
M.Tanio,
S.Kondo,
S.Sugio,
and
T.Kohno
(2008).
Trimeric structure and conformational equilibrium of M-ficolin fibrinogen-like domain.
|
| |
J Synchrotron Radiat,
15,
243-245.
|
 |
|
|
|
|
 |
T.A.Springer,
J.Zhu,
and
T.Xiao
(2008).
Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3.
|
| |
J Cell Biol,
182,
791-800.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Guthold,
W.Liu,
E.A.Sparks,
L.M.Jawerth,
L.Peng,
M.Falvo,
R.Superfine,
R.R.Hantgan,
and
S.T.Lord
(2007).
A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers.
|
| |
Cell Biochem Biophys,
49,
165-181.
|
 |
|
|
|
|
 |
R.A.Burton,
G.Tsurupa,
R.R.Hantgan,
N.Tjandra,
and
L.Medved
(2007).
NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen alphaC-domain fragment.
|
| |
Biochemistry,
46,
8550-8560.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.I.Litvinov,
O.V.Gorkun,
D.K.Galanakis,
S.Yakovlev,
L.Medved,
H.Shuman,
and
J.W.Weisel
(2007).
Polymerization of fibrin: Direct observation and quantification of individual B:b knob-hole interactions.
|
| |
Blood,
109,
130-138.
|
 |
|
|
|
|
 |
R.Kotlín,
M.Chytilová,
J.Suttnar,
P.Salaj,
T.Riedel,
J.Santrůcek,
P.Klener,
and
J.E.Dyr
(2007).
A novel fibrinogen variant--Praha I: hypofibrinogenemia associated with gamma Gly351Ser substitution.
|
| |
Eur J Haematol,
78,
410-416.
|
 |
|
|
|
|
 |
V.Garlatti,
N.Belloy,
L.Martin,
M.Lacroix,
M.Matsushita,
Y.Endo,
T.Fujita,
J.C.Fontecilla-Camps,
G.J.Arlaud,
N.M.Thielens,
and
C.Gaboriaud
(2007).
Structural insights into the innate immune recognition specificities of L- and H-ficolins.
|
| |
EMBO J,
26,
623-633.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Asselta,
S.Duga,
and
M.L.Tenchini
(2006).
The molecular basis of quantitative fibrinogen disorders.
|
| |
J Thromb Haemost,
4,
2115-2129.
|
 |
|
|
|
|
 |
R.C.Marchi,
Z.Carvajal,
C.Boyer-Neumann,
E.Anglés-Cano,
and
J.W.Weisel
(2006).
Functional characterization of fibrinogen Bicêtre II: a gamma 308 Asn-->Lys mutation located near the fibrin D:D interaction sites.
|
| |
Blood Coagul Fibrinolysis,
17,
193-201.
|
 |
|
|
|
|
 |
R.R.Hantgan,
M.C.Stahle,
J.H.Connor,
D.A.Horita,
M.Rocco,
M.A.McLane,
S.Yakovlev,
and
L.Medved
(2006).
Integrin alphaIIbbeta3:ligand interactions are linked to binding-site remodeling.
|
| |
Protein Sci,
15,
1893-1906.
|
 |
|
|
|
|
 |
W.A.Barton,
D.Tzvetkova-Robev,
E.P.Miranda,
M.V.Kolev,
K.R.Rajashankar,
J.P.Himanen,
and
D.B.Nikolov
(2006).
Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex.
|
| |
Nat Struct Mol Biol,
13,
524-532.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.W.Mosesson
(2005).
Fibrinogen and fibrin structure and functions.
|
| |
J Thromb Haemost,
3,
1894-1904.
|
 |
|
|
|
|
 |
W.A.Barton,
D.Tzvetkova,
and
D.B.Nikolov
(2005).
Structure of the angiopoietin-2 receptor binding domain and identification of surfaces involved in Tie2 recognition.
|
| |
Structure,
13,
825-832.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Wang,
Q.Zhao,
and
B.M.Christensen
(2005).
Identification and characterization of the fibrinogen-like domain of fibrinogen-related proteins in the mosquito, Anopheles gambiae, and the fruitfly, Drosophila melanogaster, genomes.
|
| |
BMC Genomics,
6,
114.
|
 |
|
|
|
|
 |
A.Dear,
C.E.Dempfle,
S.O.Brennan,
W.Kirschstein,
and
P.M.George
(2004).
Fibrinogen Mannheim II: a novel gamma307 His-->Tyr substitution in the gammaD domain causes hypofibrinogenemia.
|
| |
J Thromb Haemost,
2,
2194-2199.
|
 |
|
|
|
|
 |
J.W.Weisel
(2004).
Cross-linked gamma-chains in fibrin fibrils bridge transversely between strands: no.
|
| |
J Thromb Haemost,
2,
394-399.
|
 |
|
|
|
|
 |
M.W.Mosesson
(2004).
Cross-linked gamma-chains in fibrin fibrils bridge 'transversely' between strands: yes.
|
| |
J Thromb Haemost,
2,
388-393.
|
 |
|
|
|
|
 |
R.F.Doolittle
(2004).
Determining the crystal structure of fibrinogen.
|
| |
J Thromb Haemost,
2,
683-689.
|
 |
|
|
|
|
 |
T.Ohashi,
and
H.P.Erickson
(2004).
The disulfide bonding pattern in ficolin multimers.
|
| |
J Biol Chem,
279,
6534-6539.
|
 |
|
|
|
|
 |
F.Mathonnet,
L.Guillon,
H.Detruit,
G.M.Mazmanian,
M.Dreyfus,
J.C.Alvarez,
Y.Giudicelli,
and
P.de Mazancourt
(2003).
Fibrinogen Poissy II (gammaN361K): a novel dysfibrinogenemia associated with defective polymerization and peptide B release.
|
| |
Blood Coagul Fibrinolysis,
14,
293-298.
|
 |
|
|
|
|
 |
R.F.Doolittle
(2003).
X-ray crystallographic studies on fibrinogen and fibrin.
|
| |
J Thromb Haemost,
1,
1559-1565.
|
 |
|
|
|
|
 |
R.F.Doolittle
(2003).
Structural basis of the fibrinogen-fibrin transformation: contributions from X-ray crystallography.
|
| |
Blood Rev,
17,
33-41.
|
 |
|
|
|
|
 |
G.Camenisch,
M.T.Pisabarro,
D.Sherman,
J.Kowalski,
M.Nagel,
P.Hass,
M.H.Xie,
A.Gurney,
S.Bodary,
X.H.Liang,
K.Clark,
M.Beresini,
N.Ferrara,
and
H.P.Gerber
(2002).
ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo.
|
| |
J Biol Chem,
277,
17281-17290.
|
 |
|
|
|
|
 |
M.A.Huntley,
and
G.B.Golding
(2002).
Simple sequences are rare in the Protein Data Bank.
|
| |
Proteins,
48,
134-140.
|
 |
|
|
|
|
 |
S.J.Everse
(2002).
New insights into fibrin (ogen) structure and function.
|
| |
Vox Sang,
83,
375-382.
|
 |
|
|
|
|
 |
Z.Yang,
G.Spraggon,
L.Pandi,
S.J.Everse,
M.Riley,
and
R.F.Doolittle
(2002).
Crystal structure of fragment D from lamprey fibrinogen complexed with the peptide Gly-His-Arg-Pro-amide.
|
| |
Biochemistry,
41,
10218-10224.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Madrazo,
J.H.Brown,
S.Litvinovich,
R.Dominguez,
S.Yakovlev,
L.Medved,
and
C.Cohen
(2001).
Crystal structure of the central region of bovine fibrinogen (E5 fragment) at 1.4-A resolution.
|
| |
Proc Natl Acad Sci U S A,
98,
11967-11972.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Kairies,
H.G.Beisel,
P.Fuentes-Prior,
R.Tsuda,
T.Muta,
S.Iwanaga,
W.Bode,
R.Huber,
and
S.Kawabata
(2001).
The 2.0-A crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems.
|
| |
Proc Natl Acad Sci U S A,
98,
13519-13524.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.R.Hantgan,
M.Rocco,
C.Nagaswami,
and
J.W.Weisel
(2001).
Binding of a fibrinogen mimetic stabilizes integrin alphaIIbbeta3's open conformation.
|
| |
Protein Sci,
10,
1614-1626.
|
 |
|
|
|
|
 |
J.H.Brown,
N.Volkmann,
G.Jun,
A.H.Henschen-Edman,
and
C.Cohen
(2000).
The crystal structure of modified bovine fibrinogen.
|
| |
Proc Natl Acad Sci U S A,
97,
85-90.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.R.Siebenlist,
D.A.Meh,
and
M.W.Mosesson
(2000).
Position of gamma-chain carboxy-terminal regions in fibrinogen/fibrin cross-linking mixtures.
|
| |
Biochemistry,
39,
14171-14175.
|
 |
|
|
|
|
 |
M.L.Linenberger,
J.Kindelan,
R.L.Bennett,
A.P.Reiner,
and
H.C.Côté
(2000).
Fibrinogen bellingham: a gamma-chain R275C substitution and a beta-promoter polymorphism in a thrombotic member of an asymptomatic family.
|
| |
Am J Hematol,
64,
242-250.
|
 |
|
|
|
|
 |
N.Okumura,
F.Terasawa,
K.Fujita,
M.Tozuka,
H.Ota,
and
T.Katsuyama
(2000).
Difference in electrophoretic mobility and plasmic digestion profile between four recombinant fibrinogens, gamma 308K, gamma 308I, gamma 308A, and wild type (gamma 308N).
|
| |
Electrophoresis,
21,
2309-2315.
|
 |
|
|
|
|
 |
S.N.Murthy,
J.H.Wilson,
T.J.Lukas,
Y.Veklich,
J.W.Weisel,
and
L.Lorand
(2000).
Transglutaminase-catalyzed crosslinking of the Aalpha and gamma constituent chains in fibrinogen.
|
| |
Proc Natl Acad Sci U S A,
97,
44-48.
|
 |
|
|
|
|
 |
S.O.Brennan,
J.Wyatt,
D.Medicina,
F.Callea,
and
P.M.George
(2000).
Fibrinogen brescia: hepatic endoplasmic reticulum storage and hypofibrinogenemia because of a gamma284 Gly-->Arg mutation.
|
| |
Am J Pathol,
157,
189-196.
|
 |
|
|
|
|
 |
S.Yakovlev,
E.Makogonenko,
N.Kurochkina,
W.Nieuwenhuizen,
K.Ingham,
and
L.Medved
(2000).
Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites.
|
| |
Biochemistry,
39,
15730-15741.
|
 |
|
|
|
|
 |
S.Yakovlev,
S.Litvinovich,
D.Loukinov,
and
L.Medved
(2000).
Role of the beta-strand insert in the central domain of the fibrinogen gamma-module.
|
| |
Biochemistry,
39,
15721-15729.
|
 |
|
|
|
|
 |
Z.Yang,
I.Mochalkin,
L.Veerapandian,
M.Riley,
and
R.F.Doolittle
(2000).
Crystal structure of native chicken fibrinogen at 5.5-A resolution.
|
| |
Proc Natl Acad Sci U S A,
97,
3907-3912.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Yang,
I.Mochalkin,
and
R.F.Doolittle
(2000).
A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides.
|
| |
Proc Natl Acad Sci U S A,
97,
14156-14161.
|
 |
|
|
|
|
 |
K.Yokoyama,
X.P.Zhang,
L.Medved,
and
Y.Takada
(1999).
Specific binding of integrin alpha v beta 3 to the fibrinogen gamma and alpha E chain C-terminal domains.
|
| |
Biochemistry,
38,
5872-5877.
|
 |
|
|
|
|
 |
L.Pei,
M.Palma,
M.Nilsson,
B.Guss,
and
J.I.Flock
(1999).
Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis.
|
| |
Infect Immun,
67,
4525-4530.
|
 |
|
|
|
|
 |
L.V.Medved,
M.Migliorini,
I.Mikhailenko,
L.G.Barrientos,
M.Llinás,
and
D.K.Strickland
(1999).
Domain organization of the 39-kDa receptor-associated protein.
|
| |
J Biol Chem,
274,
717-727.
|
 |
|
|
|
|
 |
M.Lausen,
N.Lynch,
A.Schlosser,
I.Tornoe,
S.G.Saekmose,
B.Teisner,
A.C.Willis,
E.Crouch,
W.Schwaeble,
and
U.Holmskov
(1999).
Microfibril-associated protein 4 is present in lung washings and binds to the collagen region of lung surfactant protein D.
|
| |
J Biol Chem,
274,
32234-32240.
|
 |
|
|
|
|
 |
M.S.Weiss,
and
R.Hilgenfeld
(1999).
A method to detect nonproline cis peptide bonds in proteins.
|
| |
Biopolymers,
50,
536-544.
|
 |
|
|
|
|
 |
S.J.Everse,
G.Spraggon,
L.Veerapandian,
and
R.F.Doolittle
(1999).
Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly-His-Arg-Pro-amide.
|
| |
Biochemistry,
38,
2941-2946.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Ware,
J.P.Donahue,
J.Hawiger,
and
W.F.Anderson
(1999).
Structure of the fibrinogen gamma-chain integrin binding and factor XIIIa cross-linking sites obtained through carrier protein driven crystallization.
|
| |
Protein Sci,
8,
2663-2671.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.A.Behnke,
V.C.Yee,
I.L.Trong,
L.C.Pedersen,
R.E.Stenkamp,
S.S.Kim,
G.R.Reeck,
and
D.C.Teller
(1998).
Structural determinants of the bifunctional corn Hageman factor inhibitor: x-ray crystal structure at 1.95 A resolution.
|
| |
Biochemistry,
37,
15277-15288.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Di Stasio,
C.Nagaswami,
J.W.Weisel,
and
E.Di Cera
(1998).
Cl- regulates the structure of the fibrin clot.
|
| |
Biophys J,
75,
1973-1979.
|
 |
|
|
|
|
 |
G.Spraggon,
D.Applegate,
S.J.Everse,
J.Z.Zhang,
L.Veerapandian,
C.Redman,
R.F.Doolittle,
and
G.Grieninger
(1998).
Crystal structure of a recombinant alphaEC domain from human fibrinogen-420.
|
| |
Proc Natl Acad Sci U S A,
95,
9099-9104.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Palma,
D.Wade,
M.Flock,
and
J.I.Flock
(1998).
Multiple binding sites in the interaction between an extracellular fibrinogen-binding protein from Staphylococcus aureus and fibrinogen.
|
| |
J Biol Chem,
273,
13177-13181.
|
 |
|
|
|
|
 |
M.W.Mosesson,
K.R.Siebenlist,
D.A.Meh,
J.S.Wall,
and
J.F.Hainfeld
(1998).
The location of the carboxy-terminal region of gamma chains in fibrinogen and fibrin D domains.
|
| |
Proc Natl Acad Sci U S A,
95,
10511-10516.
|
 |
|
|
|
|
 |
R.F.Doolittle,
G.Spraggon,
and
S.J.Everse
(1998).
Three-dimensional structural studies on fragments of fibrinogen and fibrin.
|
| |
Curr Opin Struct Biol,
8,
792-798.
|
 |
|
|
|
|
 |
S.J.Everse,
G.Spraggon,
L.Veerapandian,
M.Riley,
and
R.F.Doolittle
(1998).
Crystal structure of fragment double-D from human fibrin with two different bound ligands.
|
| |
Biochemistry,
37,
8637-8642.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.P.Ugarova,
D.A.Solovjov,
L.Zhang,
D.I.Loukinov,
V.C.Yee,
L.V.Medved,
and
E.F.Plow
(1998).
Identification of a novel recognition sequence for integrin alphaM beta2 within the gamma-chain of fibrinogen.
|
| |
J Biol Chem,
273,
22519-22527.
|
 |
|
|
|
|
 |
Y.Le,
S.H.Lee,
O.L.Kon,
and
J.Lu
(1998).
Human L-ficolin: plasma levels, sugar specificity, and assignment of its lectin activity to the fibrinogen-like (FBG) domain.
|
| |
FEBS Lett,
425,
367-370.
|
 |
|
|
|
|
 |
Y.Veklich,
E.K.Ang,
L.Lorand,
and
J.W.Weisel
(1998).
The complementary aggregation sites of fibrin investigated through examination of polymers of fibrinogen with fragment E.
|
| |
Proc Natl Acad Sci U S A,
95,
1438-1442.
|
 |
|
|
|
|
 |
H.C.Côté,
K.P.Pratt,
E.W.Davie,
and
D.W.Chung
(1997).
The polymerization pocket "a" within the carboxyl-terminal region of the gamma chain of human fibrinogen is adjacent to but independent from the calcium-binding site.
|
| |
J Biol Chem,
272,
23792-23798.
|
 |
|
|
|
|
 |
K.P.Pratt,
H.C.Côté,
D.W.Chung,
R.E.Stenkamp,
and
E.W.Davie
(1997).
The primary fibrin polymerization pocket: three-dimensional structure of a 30-kDa C-terminal gamma chain fragment complexed with the peptide Gly-Pro-Arg-Pro.
|
| |
Proc Natl Acad Sci U S A,
94,
7176-7181.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Medved,
S.Litvinovich,
T.Ugarova,
Y.Matsuka,
and
K.Ingham
(1997).
Domain structure and functional activity of the recombinant human fibrinogen gamma-module (gamma148-411).
|
| |
Biochemistry,
36,
4685-4693.
|
 |
|
|
|
|
 |
N.Okumura,
O.V.Gorkun,
and
S.T.Lord
(1997).
Severely impaired polymerization of recombinant fibrinogen gamma-364 Asp --> His, the substitution discovered in a heterozygous individual.
|
| |
J Biol Chem,
272,
29596-29601.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |