spacer
spacer

PDBsum entry 1fbz

Go to PDB code: 
protein ligands links
Transferase PDB id
1fbz

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
104 a.a. *
Ligands
CC1 ×2
Waters ×120
* Residue conservation analysis
PDB id:
1fbz
Name: Transferase
Title: Structure-based design of a novel, osteoclast-selective, nonpeptide src sh2 inhibitor with in vivo anti-resorptive activity
Structure: Proto-oncogene tyrosine-protein kinase lck. Chain: a, b. Fragment: sh2 domain. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.40Å     R-factor:   0.230     R-free:   0.360
Authors: W.Shakespeare,M.Yang,R.Bohacek,F.Cerasoli,K.Stebbis,R.Sundaramoorthi, C.Vu,S.Pradeepan,C.Metcalf,C.Haraldson,T.Merry,D.Dalgarno,S.Narula, M.Hatada,X.Lu,M.R.Van Schravendijk,S.Adams,S.Violette,J.Smith, W.Guan,C.Bartlett,J.Herson,J.Iuliucci,M.Weigele,T.Sawyer
Key ref:
W.Shakespeare et al. (2000). Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Proc Natl Acad Sci U S A, 97, 9373-9378. PubMed id: 10944210 DOI: 10.1073/pnas.97.17.9373
Date:
17-Jul-00     Release date:   23-Aug-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P06239  (LCK_HUMAN) -  Tyrosine-protein kinase Lck from Homo sapiens
Seq:
Struc:
509 a.a.
104 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.2.7.10.2  - non-specific protein-tyrosine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
L-tyrosyl-[protein]
+ ATP
= O-phospho-L-tyrosyl-[protein]
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1073/pnas.97.17.9373 Proc Natl Acad Sci U S A 97:9373-9378 (2000)
PubMed id: 10944210  
 
 
Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity.
W.Shakespeare, M.Yang, R.Bohacek, F.Cerasoli, K.Stebbins, R.Sundaramoorthi, M.Azimioara, C.Vu, S.Pradeepan, C.Metcalf, C.Haraldson, T.Merry, D.Dalgarno, S.Narula, M.Hatada, X.Lu, M.R.van Schravendijk, S.Adams, S.Violette, J.Smith, W.Guan, C.Bartlett, J.Herson, J.Iuliucci, M.Weigele, T.Sawyer.
 
  ABSTRACT  
 
Targeted disruption of the pp60(src) (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3',4'-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC(50) = 0.30 microM for AP22408 and 5.5 microM for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Chemical structures of pTyr, citrate, and Dpp (2).
Figure 3.
Fig. 3. Chemical structures of 1, 3, AP22408, AP22409, and AP22650.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20818327 M.Karlou, V.Tzelepi, and E.Efstathiou (2010).
Therapeutic targeting of the prostate cancer microenvironment.
  Nat Rev Urol, 7, 494-509.  
20404926 N.Huang, and M.P.Jacobson (2010).
Binding-site assessment by virtual fragment screening.
  PLoS One, 5, e10109.  
20338519 S.Virdee, D.Macmillan, and G.Waksman (2010).
Semisynthetic Src SH2 domains demonstrate altered phosphopeptide specificity induced by incorporation of unnatural lysine derivatives.
  Chem Biol, 17, 274-284.  
20209564 W.Jahnke, and C.Henry (2010).
An in vitro assay to measure targeted drug delivery to bone mineral.
  ChemMedChem, 5, 770-776.  
19539345 G.Ye, A.D.Schuler, Y.Ahmadibeni, J.R.Morgan, A.Faruqui, K.Huang, G.Sun, J.A.Zebala, and K.Parang (2009).
Synthesis and evaluation of phosphopeptides containing iminodiacetate groups as binding ligands of the Src SH2 domain.
  Bioorg Chem, 37, 133-142.  
18942061 J.Araujo, and C.Logothetis (2009).
Targeting Src signaling in metastatic bone disease.
  Int J Cancer, 124, 1-6.  
19787002 L.C.Kim, L.Song, and E.B.Haura (2009).
Src kinases as therapeutic targets for cancer.
  Nat Rev Clin Oncol, 6, 587-595.  
19334714 P.K.Mandal, D.Limbrick, D.R.Coleman, G.A.Dyer, Z.Ren, J.S.Birtwistle, C.Xiong, X.Chen, J.M.Briggs, and J.S.McMurray (2009).
Conformationally constrained peptidomimetic inhibitors of signal transducer and activator of transcription. 3: Evaluation and molecular modeling.
  J Med Chem, 52, 2429-2442.  
18536014 J.D.Taylor, A.Ababou, R.R.Fawaz, C.J.Hobbs, M.A.Williams, and J.E.Ladbury (2008).
Structure, dynamics, and binding thermodynamics of the v-Src SH2 domain: implications for drug design.
  Proteins, 73, 929-940.
PDB code: 2jyq
18179464 W.C.Shakespeare, Y.Wang, R.Bohacek, T.Keenan, R.Sundaramoorthi, C.Metcalf, A.Dilauro, S.Roeloffzen, S.Liu, J.Saltmarsh, G.Paramanathan, D.Dalgarno, S.Narula, S.Pradeepan, M.R.van Schravendijk, J.Keats, M.Ram, S.Liou, S.Adams, S.Wardwell, J.Bogus, J.Iuliucci, M.Weigele, L.Xing, B.Boyce, and T.K.Sawyer (2008).
SAR of carbon-linked, 2-substituted purines: synthesis and characterization of AP23451 as a novel bone-targeted inhibitor of Src tyrosine kinase with in vivo anti-resorptive activity.
  Chem Biol Drug Des, 71, 97.  
17325789 S.Zhang, G.Gangal, and H.Uludağ (2007).
'Magic bullets' for bone diseases: progress in rational design of bone-seeking medicinal agents.
  Chem Soc Rev, 36, 507-531.  
16990796 L.V.Kalia, G.M.Pitcher, K.A.Pelkey, and M.W.Salter (2006).
PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex.
  EMBO J, 25, 4971-4982.  
16428929 T.Chen, J.A.George, and C.C.Taylor (2006).
Src tyrosine kinase as a chemotherapeutic target: is there a clinical case?
  Anticancer Drugs, 17, 123-131.  
16176984 D.S.Lee, E.Flachsová, M.Bodnárová, B.Demeler, P.Martásek, and C.S.Raman (2005).
Structural basis of hereditary coproporphyria.
  Proc Natl Acad Sci U S A, 102, 14232-14237.
PDB code: 2aex
16025223 W.Kozlow, and T.A.Guise (2005).
Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy.
  J Mammary Gland Biol Neoplasia, 10, 169-180.  
15380511 R.Ishizawar, and S.J.Parsons (2004).
c-Src and cooperating partners in human cancer.
  Cancer Cell, 6, 209-214.  
12665416 D.M.Biskobing (2003).
Novel therapies for osteoporosis.
  Expert Opin Investig Drugs, 12, 611-621.  
14991680 R.Sundaramoorthi, N.Kawahata, M.G.Yang, W.C.Shakespeare, C.A.Metcalf, Y.Wang, T.Merry, C.J.Eyermann, R.S.Bohacek, S.Narula, D.C.Dalgarno, and T.K.Sawyer (2003).
Structure-based design of novel nonpeptide inhibitors of the Src SH2 domain:phosphotyrosine mimetics exploiting multifunctional group replacement chemistry.
  Biopolymers, 71, 717-729.  
12368088 A.D.Robertson (2002).
Intramolecular interactions at protein surfaces and their impact on protein function.
  Trends Biochem Sci, 27, 521-526.  
12501160 A.V.Veselovsky, Y.D.Ivanov, A.S.Ivanov, A.I.Archakov, P.Lewi, and P.Janssen (2002).
Protein-protein interactions: mechanisms and modification by drugs.
  J Mol Recognit, 15, 405-422.  
12133718 B.K.Shoichet, S.L.McGovern, B.Wei, and J.J.Irwin (2002).
Lead discovery using molecular docking.
  Curr Opin Chem Biol, 6, 439-446.  
12047871 G.Scapin (2002).
Structural biology in drug design: selective protein kinase inhibitors.
  Drug Discov Today, 7, 601-611.  
12084912 H.W.Kessels, A.C.Ward, and T.N.Schumacher (2002).
Specificity and affinity motifs for Grb2 SH2-ligand interactions.
  Proc Natl Acad Sci U S A, 99, 8524-8529.  
12510830 I.H.Choi, and C.Kim (2002).
Flexible docking of an acetoxyethoxymethyl derivative of thiosemicarbazone into three different species of dihydrofolate reductase.
  Arch Pharm Res, 25, 807-816.  
11994738 M.B.Yaffe (2002).
Phosphotyrosine-binding domains in signal transduction.
  Nat Rev Mol Cell Biol, 3, 177-186.  
12528469 M.Koida (2002).
[Pharmacotherapy of osteoporosis]
  Nippon Yakurigaku Zasshi, 120, 379-389.  
12413557 P.Kuhn, K.Wilson, M.G.Patch, and R.C.Stevens (2002).
The genesis of high-throughput structure-based drug discovery using protein crystallography.
  Curr Opin Chem Biol, 6, 704-710.  
12120503 R.R.Neubig, and D.P.Siderovski (2002).
Regulators of G-protein signalling as new central nervous system drug targets.
  Nat Rev Drug Discov, 1, 187-197.  
11807171 Z.Y.Zhang (2002).
Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development.
  Annu Rev Pharmacol Toxicol, 42, 209-234.  
11746693 G.M.Verkhivker, D.Bouzida, D.K.Gehlhaar, P.A.Rejto, L.Schaffer, S.Arthurs, A.B.Colson, S.T.Freer, V.Larson, B.A.Luty, T.Marrone, and P.W.Rose (2001).
Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes: structural analysis of the peptide complexes with SH2 domains.
  Proteins, 45, 456-470.  
11354377 J.Schoepfer, B.Gay, N.End, E.Muller, G.Scheffel, G.Caravatti, and P.Furet (2001).
Convergent synthesis of potent peptide inhibitors of the Grb2-SH2 domain by palladium catalyzed coupling of a terminal alkyne.
  Bioorg Med Chem Lett, 11, 1201-1203.  
11682324 M.Vidal, V.Gigoux, and C.Garbay (2001).
SH2 and SH3 domains as targets for anti-proliferative agents.
  Crit Rev Oncol Hematol, 40, 175-186.  
11470604 W.C.Shakespeare (2001).
SH2 domain inhibition: a problem solved?
  Curr Opin Chem Biol, 5, 409-415.  
11206074 A.M.Petros, D.G.Nettesheim, Y.Wang, E.T.Olejniczak, R.P.Meadows, J.Mack, K.Swift, E.D.Matayoshi, H.Zhang, C.B.Thompson, and S.W.Fesik (2000).
Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies.
  Protein Sci, 9, 2528-2534.
PDB code: 1g5j
11121839 M.Susva, M.Missbach, and J.Green (2000).
Src inhibitors: drugs for the treatment of osteoporosis, cancer or both?
  Trends Pharmacol Sci, 21, 489-495.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer